Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Electrical Properties of the Fabricated PCF
3.2. Mechanical Properties of PCF
3.3. Temporal Response and Detection Mechanism of PCF Sensors
3.4. Chemical Detection Properties of C-Type PCF Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, S.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Lee, J.H. Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect. Sens. Actuators B Chem. 2019, 300, 127040. [Google Scholar] [CrossRef]
- Chen, W.; Yang, P.; Shen, W.; Zhu, C.; Lv, D.; Tan, R.; Song, W. Flexible room temperature ammonia gas sensor based on in suit polymerized PANI/PVDF porous composite film. J. Mater. Sci. Mater. Electron. 2020, 31, 11870–11877. [Google Scholar] [CrossRef]
- Tonezzer, M. Selective gas sensor based on one single SnO2 nanowire. Sens. Actuators B Chem. 2019, 288, 53–59. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Bai, J.L.; Zhao, H.; Yang, Z.Y.; Gu, X.Y.; Huang, B.Y.; Xie, E.Q. Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes. Sens. Actuators B Chem. 2018, 265, 273–284. [Google Scholar] [CrossRef]
- Kong, J. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2018, 119, 599–663. [Google Scholar] [CrossRef]
- Rushi, A.D.; Datta, K.P.; Ghosh, P.S.; Mulchandani, A.; Shirsat, M.D. Selective Discrimination among Benzene, Toluene, and Xylene: Probing Metalloporphyrin-Functionalized Single-Walled Carbon Nanotube-Based Field Effect Transistors. J. Phys. Chem. C 2014, 118, 24034–24041. [Google Scholar] [CrossRef]
- Li, P.; Martin, C.M.; Yeung, K.K.; Xue, W. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors. Biosensors 2011, 1, 23–35. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kim, T.W.; Son, M.H.; Oh, S.W.; Lee, M.J. A study on prioritization of HNS management in Korean waters. J. Korean Soc. Mar. 2015, 21, 672–678. [Google Scholar] [CrossRef]
- Bodnarchuk, M.I.; Kovalenko, M.V.; Pichler, S.; Fritz-Popovski, G.; Hesser, G.; Heiss, W. Large-Area Ordered Superlattices from Magnetic Wüstite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting. ACS Nano 2009, 4, 423–431. [Google Scholar] [CrossRef]
- Lim, S.; Kim, S.; Ahn, K.H.; Lee, S.J. The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries. J. Power Sources 2015, 299, 221–230. [Google Scholar] [CrossRef]
- Prosini, P.P.; Cento, C.; Carewska, M.; Masci, A. Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ion. 2015, 274, 34–39. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, K.K.; Cui, Y.; Lim, S.C.; Cho, Y.W.; Kim, S.M.; Lee, Y.H. Adhesion test of Carbon Nanotube Film coated onto transparent conducting substrates. Nano 2010, 5, 133–138. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, M.; Jung, J.Y.; Kim, T.W.; Kim, D. Initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents to mitigate its damages. Mar. Pollut. Bull. 2019, 139, 205–213. [Google Scholar] [CrossRef]
- Kim, Y.R.; Choi, J.Y.; Son, M.H.; Oh, S.W.; Lee, M.J.; Lee, S.J. Prioritizing noxious liquid substances (NLS) for preparedness against potential spill incidents in Korean coastal waters. J. Korean Soc. Mar. 2016, 22, 846–853. [Google Scholar] [CrossRef]
- Alves, A.P.P.; Trigueiro, J.P.C.; Calado, H.D.R.; Silva, G.G. Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: Structure and electrochemical properties. Electrochem. Acta 2016, 209, 111–120. [Google Scholar] [CrossRef]
- Riheen, M.A.; Saha, T.K.; Sekhar, P.K. Inkjet Printing on PET Substrate. J. Electrochem Soc. 2019, 166, B3036–B3039. [Google Scholar] [CrossRef]
- Saran, N.; Parikh, K.; Suh, D.-S.; Muñoz, E.; Kolla, H.; Manohar, S.K. Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates. J. Am. Chem. Soc. 2004, 126, 4462–4463. [Google Scholar] [CrossRef]
- Chalker, P.R.; Bull, S.J.; Rickerby, D.S. A review of the methods for the evaluation of coating-substrate adhesion. Mater. Sci. Eng. A 1991, 140, 583–592. [Google Scholar] [CrossRef]
- Petit, S.; Laurens, P.; Barthes-Labrousse, M.G.; Amouroux, J.; Aréfi-Khonsari, F. Al/PET adhesion: Role of an excimer laser pretreatment of PET prior to aluminum thermal evaporation. J. Adhes. Sci. Technol. 2003, 17, 353–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, Z.; Bessho, T. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting. Nanotechnology 2017, 28, 105607. [Google Scholar] [CrossRef]
- Zhang, F.-H.; Wang, R.-G.; He, X.-D.; Wang, C.; Ren, L.-N. Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid. J. Mater. Sci. 2009, 44, 3574–3577. [Google Scholar] [CrossRef]
- Bohari, N.A.; Siddiquee, S.; Saallah, S.; Misson, M.; Arshad, S.E. Optimization and Analytical Behavior of Electrochemical Sensors Based on the Modification of Indium Tin Oxide (ITO) Using PANI/MWCNTs/AuNPs for Mercury Detection. Sensors 2020, 20, 6502. [Google Scholar] [CrossRef] [PubMed]
- Quang, N.H.; Van Trinh, M.; Lee, B.-H.; Huh, J.-S. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B Chem. 2006, 113, 341–346. [Google Scholar] [CrossRef]
- Wang, S.G.; Zhang, Q.; Yang, D.J.; Sellin, P.J.; Zhong, G.F. Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mater. 2004, 13, 1327–1332. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; He, J.; Wang, J.; Liu, F.; Lu, G. Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: Ppb-level detection of NH3. Sens. Actuators B Chem. 2019, 299, 126970. [Google Scholar] [CrossRef]
- Yamada, A.; Kato, Y.; Yoshikuni, T.; Tanaka, Y.; Tanaka, N. Computer-assisted measurement of ion-diffusion coefficients by use of the cottrell equation. Anal. Chim. Acta 1979, 112, 55–63. [Google Scholar] [CrossRef]
- Taralkar, S.V.; Chattopadhyay, S.; Gaikar, V.G. Parametric optimization and modeling of batch extraction process for extraction of betulinic acid from leaves of Vitex Negundo Linn. Sep. Sci. Technol. 2015, 51, 641–652. [Google Scholar] [CrossRef]
- Karimi, M.; Tashvigh, A.A.; Asadi, F.; Ashtiani, F.Z. Determination of concentration-dependent diffusion coefficient of seven solvents in polystyrene systems using FTIR-ATR technique: Experimental and mathematical studies. RSC Adv. 2016, 6, 9013–9022. [Google Scholar] [CrossRef]
- Murad, S. The role of external electric fields in enhancing ion mobility, drift velocity, and drift–diffusion rates in aqueous electrolyte solutions. J. Chem. Phys. 2011, 134, 114504. [Google Scholar] [CrossRef] [PubMed]
Polarity | Substances | Permeable Exposure Level *1 [ppm] | Polarity Index *1 | Physical Property in Seawater/ Floating [F], Solubility [S], Evaporating [E] | Limit of Detection *2 [ppm] | Response Time *2 (Standard Error) [s] |
---|---|---|---|---|---|---|
Polar | Methyl alcohol | 200 | 6.6 | [F], [S] | 0.54 | 78 (±5) |
Ethyl alcohol | 200 | 5.2 | [F], [S] | 0.12 | 98 (±8) | |
Iso-propanol | 200 | 4.3 | [F], [S], [E] | 0.07 | 82 (±8) | |
Acetone | 500 | 5.4 | [F], [S], [E] | 2.49 | 107 (±9) | |
Ammonia | 25 | 3.8 | [F], [S], [E] | 0.01 | 87 (±4) | |
Non-Polar | Vinyl acetate | 10 | 2.8 | [F], [S], [E] | 3.45 | 187 (±5) |
Benzene | 0.5 | 2.3 | [F], [E] | 0.07 | 173 (±11) | |
Ethyl Benzene | 100 | 2.4 | [F], [E] | 1.53 | 148 (±4) | |
Styrene | 20 | 2.5 | [F], [E] | 6.39 | 168 (±8) | |
Toluene | 50 | 2.3 | [F], [E] | 0.22 | 159 (±8) | |
Heptane | 400 | 0.2 | [F], [E] | 1.06 | 242 (±7) | |
n-Hexane | 50 | 0.3 | [F], [E] | 10.9 | 217 (±11) |
Sensor Performances | C-Type PCF | R-Type PCF |
---|---|---|
Sensor Response, ΔR at 25 ppm (Standard Error) | 6.43 (±0.29) | 1.73 (±0.14) |
Sensitivity (ΔR/ΔCHNS) [/ppm] (Standard Error) | 0.053 (±0.003) | 0.011 (±0.001) |
Limit of Detection (LOD) [ppm] | 0.011 | 0.025 |
Response Time, τR at 25 ppm [s] (Standard Error) | 87 (±4) | 31 (±1.4) |
Coefficient of determination (R2) for a linear fitting | 0.96 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, J.; An, S.; Lee, C.; Chang, J.; Lee, S.; Lee, M.; Seo, D. Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals. Sensors 2021, 21, 5179. https://doi.org/10.3390/s21155179
Noh J, An S, Lee C, Chang J, Lee S, Lee M, Seo D. Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals. Sensors. 2021; 21(15):5179. https://doi.org/10.3390/s21155179
Chicago/Turabian StyleNoh, Jaeha, Sangsu An, Changhan Lee, Jiho Chang, Snagtae Lee, Moonjin Lee, and Dongmin Seo. 2021. "Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals" Sensors 21, no. 15: 5179. https://doi.org/10.3390/s21155179
APA StyleNoh, J., An, S., Lee, C., Chang, J., Lee, S., Lee, M., & Seo, D. (2021). Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals. Sensors, 21(15), 5179. https://doi.org/10.3390/s21155179