Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, B.C.; Crawford, E.W.; Hornbein, T.F.; Martin, W.E.; Guntheroth, W.G. Hemodynamic effects of changes in arterial carbon dioxide tension during intermittent positive pressure ventilation. Anesthesiology 1967, 28, 866–873. [Google Scholar] [CrossRef]
- Teboul, J.L.; Monnet, X.; Chemla, D.; Michard, F. Arterial Pulse Pressure Variation with Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2019, 199, 22–31. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Chergui, K.; Augarde, R.; Prin, S.; Page, B.; Beauchet, A.; Jardin, F. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am. J. Respir. Crit. Care Med. 2003, 168, 671–676. [Google Scholar] [CrossRef]
- Rex, S.; Brose, S.; Metzelder, S.; Huneke, R.; Schalte, G.; Autschbach, R.; Rossaint, R.; Buhre, W. Prediction of fluid responsiveness in patients during cardiac surgery. Br. J. Anaesth. 2004, 93, 782–788. [Google Scholar] [CrossRef]
- Berkenstadt, H.; Margalit, N.; Hadani, M.; Friedman, Z.; Segal, E.; Villa, Y.; Perel, A. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth. Analg. 2001, 92, 984–989. [Google Scholar] [CrossRef]
- Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical image classification with convolutional neural network. In Proceedings of the 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12 December 2014; pp. 844–848. [Google Scholar]
- Marx, G.; Cope, T.; McCrossan, L.; Swaraj, S.; Cowan, C.; Mostafa, S.M.; Wenstone, R.; Leuwer, M. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur. J. Anaesthesiol. 2004, 21, 132–138. [Google Scholar] [CrossRef]
- Reuter, D.A.; Kirchner, A.; Felbinger, T.W.; Weis, F.C.; Kilger, E.; Lamm, P.; Goetz, A.E. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit. Care Med. 2003, 31, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Han, S.; Kim, G.S.; Gwak, M.S. Evaluation of new calibrated pulse-wave analysis (VolumeViewTM/EV1000TM) for cardiac output monitoring undergoing living donor liver transplantation. PLoS ONE 2016, 11, e0164521. [Google Scholar] [CrossRef][Green Version]
- Wiesenack, C.; Prasser, C.; Rodig, G.; Keyl, C. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth. Analg. 2003, 96, 1254–1257. [Google Scholar] [CrossRef]
- Buhre, W.; Rossaint, R. Perioperative management and monitoring in anaesthesia. Lancet 2003, 362, 1839–1846. [Google Scholar] [CrossRef]
- Bendjelid, K.; Marx, G.; Kiefer, N.; Simon, T.P.; Geisen, M.; Hoeft, A.; Siegenthaler, N.; Hofer, C.K. Performance of a new pulse contour method for continuous cardiac output monitoring: Validation in critically ill patients. Br. J. Anaesth. 2013, 111, 573–579. [Google Scholar] [CrossRef]
- Biais, M.; Nouette-Gaulain, K.; Cottenceau, V.; Vallet, A.; Cochard, J.F.; Revel, P.; Sztark, F. Cardiac output measurement in patients undergoing liver transplantation: Pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth. Analg. 2008, 106, 1480–1486. [Google Scholar] [CrossRef]
- Moon, Y.J.; Moon, H.S.; Kim, D.S.; Kim, J.M.; Lee, J.K.; Shim, W.H.; Kim, S.H.; Hwang, G.S.; Choi, J.S. Deep learning-based stroke volume estimation outperforms conventional arterial contour method in patients with hemodynamic instability. J. Clin. Med. 2019, 8, 1419. [Google Scholar] [CrossRef]
- Kato, N.; Fadlullah, Z.M.; Mao, B.M.; Tang, F.; Akashi, O.; Inoue, T.; Mizutani, K. The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective. IEEE Wirel. Commun. 2017, 24, 146–153. [Google Scholar] [CrossRef]
- Pourbabaee, B.; Roshtkhari, M.J.; Khorasani, K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2095–2104. [Google Scholar] [CrossRef]
- Yao, Q.H.; Wang, R.X.; Fan, X.M.; Liu, J.K.; Li, Y. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. Inform. Fusion 2020, 53, 174–182. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inform. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Yildirim, O.; Plawiak, P.; Tan, R.S.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef]
- Qayyum, A.; Anwar, S.M.; Awais, M.; Majid, M. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017, 266, 8–20. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. arXiv 2016, arXiv:1606.04797. [Google Scholar]
- Lee, H.C.; Jung, C.W. Vital Recorder-a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices. Sci. Rep. 2018, 8, 1527. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Jyh-Cherng Gu, S.-L.Y. Removal of DC offset in current and voltage signals using a novel Fourier filter algorithm. IEEE Trans. Power Deliv. 2000, 15, 73–79. [Google Scholar] [CrossRef]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014, arXiv:1412.6806. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Diederik, P.; Kingma, J.L.B. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Oh, S.L.; Ng, E.Y.K.; Tan, R.S.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287. [Google Scholar] [CrossRef]
- Wu, T. CNN and RNN-based deep learning methods for digital signal demodulation. In Proceedings of the IVSP 2019: 2019 International Conference on Image, Video and Signal Processing, Shanghai, China, 25–28 February 2019; pp. 122–127. [Google Scholar]
- Li, Z.; Qin, Z.; Huang, K.; Yang, X.; Ye, S. Intrusion detection using convolutional neural networks for representation learning. In Neural Information Processing. ICONIP 2017, Lecture Notes in Computer Science; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S., Eds.; Springer: Cham, Switzerland, 2017; pp. 858–866. [Google Scholar]
- Zhang, Z.; Lu, B.; Sheng, X.; Jin, N. Accuracy of stroke volume variation in predicting fluid responsiveness: A systematic review and meta-analysis. J. Anesth. 2011, 25, 904–916. [Google Scholar] [CrossRef] [PubMed]
Training Set (N = 210) | Validation Set (N = 217) | Test Set (N = 130) | Total Set (N = 557) | p-Value | |
---|---|---|---|---|---|
Demographics | |||||
Age (yrs.) | 58 (49–63) | 56 (45–63) | 56 (41–64) | 57 (47–63) | 0.17 |
Sex (male) | 145 (69.0%) | 154 (71.0%) | 82 (63.1%) | 381 (68.4%) | 0.30 |
Weight (kg) | 65 ± 12 | 67 ± 13 | 64 ± 12 | 66 ± 13 | 0.02 |
Height (cm) | 166 (160–171) | 167 (160–172) | 166 (160–170) | 166 (160–172) | 0.13 |
Body mass index (kg/m2) | 23.4 (21.1–26.2) | 24.0 (21.6–26.8) | 23.4 (21.6–25.4) | 23.6 (21.3–26.2) | 0.12 |
ASA classification a | <0.001 | ||||
1 | 12 (5.7) | 8 (3.7) | 23 (17.7) | 43 (7.7) | |
2 | 63 (30.0) | 68 (31.3) | 68 (52.3) | 199 (35.7) | |
3 | 111 (52.9) | 115 (53.0) | 38 (29.2) | 264 (47.4) | |
4 | 18 (8.6) | 25 (11.5) | 0 (0.0) | 43 (7.7) | |
5 | 6 (2.9) | 1 (0.5) | 1 (0.8) | 8 (1.4) | |
Underlying disease | |||||
Diabetes mellitus | 55 (26.2) | 56 (25.8) | 26 (20.0) | 137 (24.6) | 0.38 |
Hypertension | 63 (30.0) | 69 (31.8) | 32 (24.6) | 164 (29.4) | 0.36 |
Operation time, mins | 779 (399–870) | 755 (423–842) | 430 (320–740) | 733 (376–834) | <0.001 |
Emergency surgery | 25 (11.9) | 20 (9.2) | 8 (6.2) | 53 (9.5) | 0.21 |
Type of Operation | |||||
Transplant b | 150 (71.4) | 150 (69.1) | 53 (40.8) | 353 (63.4) | <0.001 |
Major open abdominal surgery | 52 (24.8) | 62 (28.6) | 71 (54.6) | 185 (33.2) | <0.001 |
Major laparoscopic abdominal surgery | 2 (1.0) | 4 (1.8) | 4 (3.1) | 10 (1.8) | 0.36 |
Minor abdominal surgery | 5 (2.4) | 0 (0.0) | 0 (0.0) | 5 (0.9) | 0.02 |
Others c | 1 (0.5) | 1 (0.5) | 2 (1.5) | 4 (0.7) | 0.45 |
Training Set (N = 210, 37.7%) | Validation Set (N = 217, 38.9%) | Test Set (N = 130, 23.4%) | Overall (N = 557) | p-Value | |
---|---|---|---|---|---|
Duration (min) | 120,679 | 131,474 | 31,598 | 283,752 | |
Blood pressure (mmHg) | |||||
Systolic | 110.7 ± 16.8 | 114.2 ± 17.4 | 113.0 ± 18.1 | 112.8 ± 17.4 | <0.001 |
Diastolic | 55.2 ± 9.6 | 57.5 ± 9.9 | 56.2 ± 9.9 | 56.5 ± 9.8 | <0.001 |
Heart rate (bpm) | 82.0 ± 15.2 | 81.3 ± 16.2 | 82.8 ± 14.1 | 81.8 ± 15.5 | <0.001 |
Stroke volume (mL/beat) | 87.3 ± 29.4 | 86.6 ± 26.4 | 80.0 ± 24.2 | 85.2 ± 27.5 | <0.001 |
Stroke volume index (mL/beat/m2) | 50.7 ± 16.2 | 50.1 ± 14.5 | 48.8 ± 15.2 | 50.2 ± 15.3 | <0.001 |
Systemic vascular resistance (dyne∙s/cm5) | 854.3 ± 354.5 | 880.7 ± 331.8 | 931.4 ± 381.0 | 877.6 ± 349.6 | <0.001 |
Cardiac output (L/min) | 7.0 ± 2.6 | 6.9 ± 2.3 | 6.5 ± 2.0 | 6.9 ± 2.4 | <0.001 |
Stroke volume variance (%) | 8.1 ± 4.9 | 8.1 ± 4.4 | 9.4 ± 5.2 | 8.3 ± 4.8 | <0.001 |
Model Type | Pearson Correlation, r | Mean Squared Error |
---|---|---|
Min-max Normalization + max pooling | 0.64 | 33.21 |
Min-max Normalization + average pooling | 0.66 | 22.86 |
Min-max Normalization + convolutional strides | 0.65 | 31.15 |
Removed DC offset + max pooling | 0.80 | 9.59 |
Removed DC offset + average pooling | 0.83 | 9.3 |
Removed DC offset + convolutional strides | 0.91 | 6.92 |
Data Type | Linear Regression Analysis | Bland-Altman Analysis | Mean Absolute Error | Mean Squared Error | Concordance Rate (%) | |
---|---|---|---|---|---|---|
Pearson Correlation | Bias | 95% Limits of Agreement | ||||
ABP signal | 0.91 | −1.00 | −4.47~2.48 | 1.55 | 4.74 | 90.14% |
Pre-processed ABP | 0.93 | −0.87 | −4.34~2.59 | 1.30 | 4.08 | 92.56% |
Frequency of ABP | 0.88 | −0.88 | −5.03~3.27 | 1.52 | 5.08 | 88.19% |
Slope of ABP | 0.93 | −1.00 | −4.62~2.61 | 1.38 | 4.59 | 92.99% |
Combined pre-processed and slope ABP | 0.94 | −0.93 | −4.02~2.17 | 1.24 | 3.18 | 92.86% |
Combined pre-processed, frequency and slope of ABP | 0.95 | −0.85 | −2.88~0.71 | 1.01 | 2.13 | 96.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.-M.; Seo, W.-Y.; Kim, J.-M.; Shim, W.-H.; Kim, S.-H.; Hwang, G.-S. Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network. Sensors 2021, 21, 5130. https://doi.org/10.3390/s21155130
Kwon H-M, Seo W-Y, Kim J-M, Shim W-H, Kim S-H, Hwang G-S. Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network. Sensors. 2021; 21(15):5130. https://doi.org/10.3390/s21155130
Chicago/Turabian StyleKwon, Hye-Mee, Woo-Young Seo, Jae-Man Kim, Woo-Hyun Shim, Sung-Hoon Kim, and Gyu-Sam Hwang. 2021. "Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network" Sensors 21, no. 15: 5130. https://doi.org/10.3390/s21155130
APA StyleKwon, H.-M., Seo, W.-Y., Kim, J.-M., Shim, W.-H., Kim, S.-H., & Hwang, G.-S. (2021). Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network. Sensors, 21(15), 5130. https://doi.org/10.3390/s21155130