An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC
Abstract
:1. Introduction
2. Related Work
3. Sailfish Optimizer
Inspiration
4. Mapping Using SFOA
4.1. Problem Formulation
4.2. SFOA for NoC Mapping
4.3. Parameters Setting for SFOA
5. Models Used for Analysis of Metrics
5.1. Bit Energy Model
5.2. CMOS Cell Library Model
6. The Proposed Algorithm: SFOA
6.1. Empirical Base for Initial Mapping
- Step 1: From DCG, randomly select the IP-Core
- Step 2: Use the DC matrix to find the presence of direct connection of the selected core with each core.
- Step 3: Calculate the average CC () and weight () for each core () as follows:
- Step 4: For the identification of hop counts among the source node and sink node , use the following matrix:
- Step 5: Using the shared K-nearest neighbor clustering approach, form a diverse cluster. If and have each other in their closest K-nearest neighbors list, then an edge exists between them. The strength of this edge is evaluated using:
6.2. Video Object Plane Decoder
6.3. SFOA Algorithm
6.3.1. Initialization
6.3.2. Aristocracy
6.3.3. Attack-Alternation Technique
6.3.4. Hunting Prey
6.3.5. Catching Prey
6.3.6. Deducing Optimal Sailfish
7. Results and Discussion
7.1. Experimental Setup
7.2. Average Power Dissipation Analysis
7.3. Communication Cost and Computation Time Analysis
7.4. Average Network Latency Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bjerregaard, T.; Mahadevan, S. A survey of research and practices of network-on-chip. ACM Comput. Surv. (CSUR) 2006, 38, 1–es. [Google Scholar] [CrossRef]
- Tsai, W.C.; Lan, Y.C.; Hu, Y.H.; Chen, S.J. Networks on chips: Structure and design methodologies. J. Electr. Comput. Eng. 2012, 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Baloch, N.K.; Baig, M.I.; Daneshtalab, M. Defender: A low overhead and efficient fault-tolerant mechanism for reliable on-chip router. IEEE Access 2019, 7, 142843–142854. [Google Scholar] [CrossRef]
- Rashid, M.; Baloch, N.K.; Shafique, M.A.; Hussain, F.; Saleem, S.; Zikria, Y.B.; Yu, H. Fault-Tolerant Network-On-Chip Router Architecture Design for Heterogeneous Computing Systems in the Context of Internet of Things. Sensors 2020, 20, 5355. [Google Scholar] [CrossRef] [PubMed]
- Shafique, M.A.; Baloch, N.K.; Baig, M.I.; Hussain, F.; Zikria, Y.B.; Kim, S.W. NoCGuard: A Reliable Network-on-Chip Router Architecture. Electronics 2020, 9, 342. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Baloch, N.K.; Anjum, S.; Zikria, Y.B.; Kim, S.W. An energy efficient and low overhead fault mitigation technique for internet of thing edge devices reliable on-chip communication. Softw. Pract. Exp. 2020. [Google Scholar] [CrossRef]
- Bononi, L.; Concer, N. Simulation and analysis of network on chip architectures: Ring, spidergon and 2D mesh. In Proceedings of the Design Automation & Test in Europe Conference, Munich, Germany, 6–10 March 2006; Volume 2, p. 6. [Google Scholar]
- Tosun, S.; Ozturk, O.; Ozen, M. An ILP formulation for application mapping onto network-on-chips. In Proceedings of the 2009 International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 14–16 October 2009; pp. 1–5. [Google Scholar]
- Shadravan, S.; Naji, H.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
- Araki, D.; Yoshihiro, T. A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks. Sensors 2019, 19, 2688. [Google Scholar] [CrossRef] [Green Version]
- Melo, D.R.; Zeferino, C.A.; Dilillo, L.; Bezerra, E.A. Maximizing the inner resilience of a network-on-chip through router controllers design. Sensors 2019, 19, 5416. [Google Scholar] [CrossRef]
- Wu, L.; Cai, H. Energy-Efficient Adaptive Sensing Scheduling in Wireless Sensor Networks using Fibonacci Tree Optimization Algorithm. Sensors 2021, 21, 5002. [Google Scholar] [CrossRef]
- Rhee, J.H.; Kim, S.I.; Lee, K.M.; Kim, M.K.; Lim, Y.M. Optimization of Position and Number of Hotspot Detectors Using Artificial Neural Network and Genetic Algorithm to Estimate Material Levels Inside a Silo. Sensors 2021, 21, 4427. [Google Scholar] [CrossRef] [PubMed]
- Ajani, T.S.; Imoize, A.L.; Atayero, A.A. An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations and Applications. Sensors 2021, 21, 4412. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Saxena, N.; Khurana, M.; Singh, D.; Abdalla, M.; Alshazly, H. Data Clustering Using Moth-Flame Optimization Algorithm. Sensors 2021, 21, 4086. [Google Scholar] [CrossRef]
- Hu, J.; Marculescu, R. Energy-and performance-aware mapping for regular NoC architectures. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2005, 24, 551–562. [Google Scholar]
- Lei, T.; Kumar, S. A two-step genetic algorithm for mapping task graphs to a network on chip architecture. In Proceedings of the Euromicro Symposium on Digital System Design, Belek-Antalya, Turkey, 1–6 September 2003; pp. 180–187. [Google Scholar]
- Murali, S.; De Micheli, G. Bandwidth-constrained mapping of cores onto NoC architectures. In Proceedings of the Proceedings Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; Volume 2, pp. 896–901. [Google Scholar]
- Lu, Z.; Xia, L.; Jantsch, A. Cluster-based simulated annealing for mapping cores onto 2D mesh networks on chip. In Proceedings of the 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Bratislava, Slovakia, 16–18 April 2008; pp. 1–6. [Google Scholar]
- Radu, C.; Vinţan, L. Domain-knowledge optimized simulated annealing for Network-on-Chip application mapping. In Advances in Intelligent Control Systems and Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 473–487. [Google Scholar]
- Ascia, G.; Catania, V.; Palesi, M. Multi-objective mapping for mesh-based NoC architectures. In Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Stockholm, Sweden, 8–10 September 2004; pp. 182–187. [Google Scholar]
- Jena, R.; Sharma, G. Application mapping of mesh based-NoC using multi-objective genetic algorithm. Int. J. Comput. Appl. 2008, 30, 17–22. [Google Scholar]
- Sepúlveda, J.; Strum, M.; Chau, W.J.; Gogniat, G. A multi-objective approach for multi-application NoC mapping. In Proceedings of the 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS), Bogota, Colombia, 23–25 February 2011; pp. 1–4. [Google Scholar]
- Harmanani, H.M.; Farah, R. A method for efficient mapping and reliable routing for NoC architectures with minimum bandwidth and area. In Proceedings of the 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, Montreal, QC, Canada, 22–25 June 2008; pp. 29–32. [Google Scholar]
- Hu, J.; Marculescu, R. Energy-aware mapping for tile-based NoC architectures under performance constraints. In Proceedings of the 2003 Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, 24 January 2003; pp. 233–239. [Google Scholar]
- Ye, T.T.; Micheli, G.D.; Benini, L. Analysis of power consumption on switch fabrics in network routers. In Proceedings of the 39th Annual Design Automation Conference, New Orleans, LA, USA, 10–14 June 2002; pp. 524–529. [Google Scholar]
- Bhat, S. Energy Models for Network-on-Chip Components; Master of Science, Department of Mathematics and Computer Science, Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2005. [Google Scholar]
- Kahng, A.B.; Lin, B.; Samadi, K. Improved on-chip router analytical power and area modeling. In Proceedings of the 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 241–246. [Google Scholar]
- Ost, L.; Guindani, G.; Moraes, F.; Indrusiak, L.; Määttä, S. Exploring NoC-based MPSoC design space with power estimation models. IEEE Des. Test Comput. 2010, 28, 16–29. [Google Scholar] [CrossRef]
- Feero, B.S.; Pande, P.P. Networks-on-chip in a three-dimensional environment: A performance evaluation. IEEE Trans. Comput. 2008, 58, 32–45. [Google Scholar] [CrossRef]
- Sahu, P.K.; Chattopadhyay, S. A survey on application mapping strategies for network-on-chip design. J. Syst. Archit. 2013, 59, 60–76. [Google Scholar] [CrossRef]
- Marcon, C.; Borin, A.; Susin, A.; Carro, L.; Wagner, F. Time and energy efficient mapping of embedded applications onto NoCs. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference, Shanghai, China, 21–21 January 2005; pp. 33–38. [Google Scholar]
- Ferrandi, F.; Lanzi, P.L.; Pilato, C.; Sciuto, D.; Tumeo, A. Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous embedded systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2010, 29, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.K.; Shah, T.; Manna, K.; Chattopadhyay, S. Application mapping onto mesh-based network-on-chip using discrete particle swarm optimization. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 22, 300–312. [Google Scholar] [CrossRef]
- Alagarsamy, A.; Gopalakrishnan, L. SAT: A new application mapping method for power optimization in 2D—NoC. In Proceedings of the 2016 20th International Symposium on VLSI Design and Test (VDAT), Guwahati, India, 24–27 May 2016; pp. 1–6. [Google Scholar]
- Tavanpour, M.; Khademzadeh, A.; Janidarmian, M. Chain-Mapping for mesh based Network-on-Chip architecture. IEICE Electron. Express 2009, 6, 1535–1541. [Google Scholar] [CrossRef] [Green Version]
- Tosun, S. New heuristic algorithms for energy aware application mapping and routing on mesh-based NoCs. J. Syst. Archit. 2011, 57, 69–78. [Google Scholar] [CrossRef]
- Patooghy, A.; Tabkhi, H.; Miremadi, S.G. RMAP: A reliability-aware application mapping for network-on-chips. In Proceedings of the 2010 third International conference on dependability, Venice, Italy, 18–25 July 2010; pp. 112–117. [Google Scholar]
- Niknam, T.; Amiri, B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 2010, 10, 183–197. [Google Scholar] [CrossRef]
- Junior, L.S.; Nedjah, N.; de Macedo Mourelle, L. Routing for applications in NoC using ACO-based algorithms. Appl. Soft Comput. 2013, 13, 2224–2231. [Google Scholar] [CrossRef]
- Xie, B.; Chen, T.; Hu, W.; Tang, X.; Wang, D. An energy-aware online task mapping algorithm in NoC-based system. J. Supercomput. 2013, 64, 1021–1037. [Google Scholar] [CrossRef]
- Herbert-Read, J.E.; Romanczuk, P.; Krause, S.; Strömbom, D.; Couillaud, P.; Domenici, P.; Kurvers, R.H.; Marras, S.; Steffensen, J.F.; Wilson, A.D.; et al. Proto-cooperation: Group hunting sailfish improve hunting success by alternating attacks on grouping prey. Proc. R. Soc. Biol. Sci. 2016, 283, 20161671. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.T.; Baas, B. NoCTweak: A Highly Parameterizable Simulator for Early Exploration of Performance and Energy of Networks on-Chip; Tech. Rep. ECE-VCL-2012-2; VLSI Computation Lab, ECE Department, University of California: Davis, CA, USA, 2012. [Google Scholar]
- Alagarsamy, A.; Gopalakrishnan, L.; Mahilmaran, S.; Ko, S.B. A self-adaptive mapping approach for network on chip with low power consumption. IEEE Access 2019, 7, 84066–84081. [Google Scholar] [CrossRef]
- Li, J.; Song, G.; Ma, Y.; Wang, C.; Zhu, B.; Chai, Y.; Rong, J. Bat algorithm based low power mapping methods for 3D network-on-chips. In Proceedings of the National Conference of Theoretical Computer Science, Nanning, China, 13–15 November 2020; pp. 277–295. [Google Scholar]
Short Biography of Authors
Benchmark | Nodes | Edges | 2D Mesh Size |
---|---|---|---|
VOPD [35] | 16 | 21 | |
MPEG4 [31] | 12 | 26 | |
MWD [35] | 12 | 13 | |
MP3encMP3dec [31] | 13 | 14 | |
263encMP3dec [31] | 12 | 12 | |
263decMP3dec [31] | 14 | 15 |
Network Type | 2D Mesh |
---|---|
Type of Platform | EMBEDDED |
Embedded applications | VOPD, MPEG4, MWD, MP3encMP3dec, 263encMP3dec, 263decMP3dec |
Mapping algorithm | SFOA, CSO, ACO, PSO, SA |
Type of Router | WORMHOLE-PIPELINE |
Routing algorithm | XY DIMENSION-ORDERED |
Arbitration Policy | VIRTUAL CHANNEL ARBITRATION |
Packet delivery type | WITHOUT ACK |
Packet distribution | EXPONENTIAL |
Sending ACK policy | SEND ACK OPTIMALLY |
Packet length (fixed) | 10 (flits) |
Injection rate (flit) | 0.1 (flits/cycle/node) |
Output channel selection | XY-ORDERED |
Buffer size | 8 (flits) |
Inter-route link length | 10,000 (µm) |
Pipeline type | 8 |
Pipeline stages | 4 |
Input clock frequency | 1000 (MHz) |
Operating clock frequency | 1000 (MHz) |
Warm-up time | 20,000 cycles |
Mapping Algorithm | VOPD | MPEG4 | MWD | MP3encMP3dec | 263encMP3dec | 263decMP3dec |
---|---|---|---|---|---|---|
ILP | 1.528 | 1.137 | 1.012 | 1.228 | 1.286 | 1.211 |
ACO | 1.920 | 1.423 | 1.218 | 1.498 | 1.599 | 1.738 |
PSO | 1.841 | 1.357 | 1.112 | 1.507 | 1.445 | 1.561 |
SAT | 1.856 | 1.370 | 1.236 | 1.524 | 1.563 | 1.624 |
SA | 1.971 | 1.478 | 1.256 | 1.590 | 1.697 | 1.877 |
GA | 1.843 | 1.356 | 1.109 | 1.507 | 1.445 | 1.561 |
BA | 1.634 | 1.247 | 1.110 | 1.486 | 1.323 | 1.313 |
CSO | 1.518 | 1.219 | 1.023 | 1.228 | 1.286 | 1.198 |
Proposed Algorithm | 1.311 | 1.201 | 1.015 | 1.228 | 1.286 | 1.148 |
Mapping Algorithm | Communication Cost (Hops × Bandwidth) in MB/s | |
---|---|---|
VOPD | MPEG4 | |
ILP [8] | 4119 | 3567 |
ACO [33] | - | 3633 |
PSO [34] | 4119 | 3567 |
SA [32] | 4231 | 3567 |
GA [21] | 4218 | 3772 |
BA [45] | 4119 | 3567 |
CSO [44] | 4119 | 3567 |
Proposed Algorithm | 4119 | 3567 |
Mapping Algorithm | Percentage of Communication Cost Deviation | |
---|---|---|
VOPD | MPEG4 | |
ACO | - | 1.9 |
PSO | 0.0 | 0.0 |
SA | 2.7 | - |
GA | 2.4 | 5.7 |
BA | 0.0 | 0.0 |
CSO | 0.0 | 0.0 |
Proposed Algorithm | 0.0 | 0.0 |
Mapping Algorithm | VOPD | MPEG4 | MWD | |||
---|---|---|---|---|---|---|
Communication Cost (Hops × Bandwidth) in MB/s | Computation Time in Seconds | Communication Cost (Hops × Bandwidth) in MB/s | Computation Time in Seconds | Communication Cost (Hops × Bandwidth) in MB/s | Computation Time in Seconds | |
ILP | 4119 | 4679.341 | 3567 | 22.340 | 1120 | 210.021 |
ACO | - | - | 3633 | 18.652 | - | - |
PSO | 4119 | 3.785 | 3567 | 3.465 | 1120 | 3.432 |
SA | 4231 | 3878.527 | 3567 | - | 1451 | 197.541 |
GA | 4218 | 3.925 | 3772 | 3.234 | 1321 | 3.420 |
BA | 4119 | 2.231 | 3567 | 2.925 | 1122 | 2.894 |
CSO | 4119 | 2.231 | 3567 | 2.010 | 1122 | 1.996 |
Proposed Algorithm | 4119 | 1.98 | 3567 | 1.96 | 1120 | 1.886 |
Mapping Algorithm | MP3encMP3dec | 263encMP3dec | 263decMP3dec | |||
Communication Cost (hops × bandwidth) in MB/s | Computation Time in Seconds | Communication Cost (hops × bandwidth) in MB/s | Computation Time in Seconds | Communication Cost (hops × bandwidth) in MB/s | Computation Time in Seconds | |
ILP | 17.021 | 1435.012 | 230.407 | 193.035 | 19.823 | 4897.210 |
ACO | 17.231 | 1196.856 | - | - | - | - |
PSO | 17.021 | 3.194 | 230.407 | 3.185 | 19.823 | 3.188 |
GA | 17.133 | 3.194 | 230.698 | 3.185 | 19.911 | 3.174 |
BA | 17.834 | 2.653 | 231.450 | 2.345 | 19.936 | 2.350 |
CSO | 17.021 | 1.785 | 230.407 | 1.527 | 19.823 | 1.511 |
Proposed Algorithm | 17.021 | 1.585 | 230.407 | 1.227 | 19.823 | 1.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikandar, S.; Baloch, N.K.; Hussain, F.; Amin, W.; Zikria, Y.B.; Yu, H. An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC. Sensors 2021, 21, 5102. https://doi.org/10.3390/s21155102
Sikandar S, Baloch NK, Hussain F, Amin W, Zikria YB, Yu H. An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC. Sensors. 2021; 21(15):5102. https://doi.org/10.3390/s21155102
Chicago/Turabian StyleSikandar, Saleha, Naveed Khan Baloch, Fawad Hussain, Waqar Amin, Yousaf Bin Zikria, and Heejung Yu. 2021. "An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC" Sensors 21, no. 15: 5102. https://doi.org/10.3390/s21155102
APA StyleSikandar, S., Baloch, N. K., Hussain, F., Amin, W., Zikria, Y. B., & Yu, H. (2021). An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC. Sensors, 21(15), 5102. https://doi.org/10.3390/s21155102