A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orientation
2.2. Production of the Skin Model
2.3. Skin Temperature Sensors and Attachment Tape
- Maxim iButtons (DS1922L, Maxim Integrated Inc., San Jose, CA, USA). The surface of the iButton with a rounded edge was used as the contact surface [23].
- Grant thermistors (EUS-U-VS5-0, Grant Instruments Ltd., Cambridge, UK).
- Custom thermistors, each consisting of a glass-encapsulated NTC thermistor (type B57550G1, 10 kΩ; diameter 1.3 mm; Epcos AG, Germany) set inside a small volume of silicone elastomer encapsulant (Sylgard 170; Dow Corning, Midland, MI, USA).
2.4. Human Trial—In Vivo Skin Temperature Sensor Comparison
2.4.1. Participants
2.4.2. Procedures
2.4.3. Experimental Measurements
2.4.4. Calculations
2.5. Thermal Skin Model Experiments
2.5.1. Procedures
2.5.2. Calculation of Steady State Data
2.5.3. Comparison of Thermal Skin Model with Human Trial
2.5.4. Local Temperature Disturbance and Sensor Bias
3. Results
3.1. Human Trial
3.1.1. Heart Rate and Onset of Sweating
3.1.2. Skin Temperature
3.2. Thermal Skin Model
3.2.1. Thermal Skin Model Comparison with the Human Trial Data
3.2.2. Temperature Disturbance
3.2.3. Measurement Bias
4. Discussion
4.1. Evaluation of Thermal Skin Model by Comparison with Human Trial
4.2. Thermal Skin Model Use for Understanding Local Temperature Disturbance and Measurement Error
4.3. Toward Universal Comparability and Long-Term Sustainability of Datasets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Further Detail about the Thermal Skin Model
Appendix A.1. Experimental Setup of the Thermal Skin Model
Appendix A.2. Establishing the Undisturbed Reference Temperature
0.2 m·s−1 Condition | 0.5 m·s−1 Condition | |||||
---|---|---|---|---|---|---|
Steady state | Subsurface sensor position | Subsurface sensor position | ||||
Center | Left | Right | Center | Left | Right | |
1 | 23.50 (0.01) | 23.49 (0.01) | 23.51 (0.01) | 23.54 (0.02) | 23.52 (0.02) | 23.55 (0.02) |
2 | 28.21 (0.01) | 28.16 (0.01) | 28.16 (0.01) | 27.59 (0.02) | 27.59 (0.02) | 27.48 (0.02) |
3 | 33.21 (0.01) | 33.11 (0.02) | 33.08 (0.01) | 31.93 (0.02) | 31.93 (0.02) | 31.67 (0.04) |
4 | 37.76 (0.01) | 37.62 (0.02) | 37.55 (0.02) | 35.89 (0.02) | 35.89 (0.02) | 35.47 (0.03) |
5 | 42.26 (0.02) | 42.07 (0.02) | 41.93 (0.02) | 39.80 (0.02) | 39.79 (0.02) | 39.21 (0.04) |
Appendix B. Calibration of Temperature Sensors
- For the calibration of the thermistors embedded in the skin simulant (n = 6), the TEE was 0.002–0.004 °C.
- For the calibration of the Tsk sensors prior to the skin model experiments (n = 5 for each sensor type), the TEE was: custom thermistors, 0.03–0.04 °C; Grant thermistors, 0.01–0.02 °C; and iButtons, 0.02–0.05 °C.
- For the calibration of the Tsk sensors prior to the human trial (n = 4 for each sensor type), the TEE was: custom thermistors, all <0.01 °C; Grant thermistors, all <0.01 °C; and iButtons, 0.01–0.02 °C.
Appendix C. Estimating Thermal Skin Model Inter-Sensor Differences
- the estimation of the model surface temperature required to be approximately equivalent to a given period mean skin temperature from the human trial (in this example, the period immediately preceding the onset of sweating during fixed-load exercise), and
- the estimation of temperature for each respective surface Tsk sensor (in this example, a Grant thermistor and custom thermistor), which is then used to calculate that particular inter-sensor difference.
References
- Gagge, A.P.; Stolwijk, J.A.J.; Hardy, J.D. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ. Res. 1967, 1, 1–20. [Google Scholar] [CrossRef]
- Nadel, E.R.; Bullard, R.W.; Stolwijk, J.A.J. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 1971, 31, 80–87. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 9886: Ergonomics—Evaluation of Thermal Strain by Physiological Measurements; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C 2010, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Paulo Silva Cunha, J. Wearable health devices—Vital sign monitoring, systems and technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef] [Green Version]
- Rowell, L.B. Reflex control of the cutaneous vasculature. J. Investig. Dermatol. 1977, 69, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Arens, E.; Huizenga, C.; Han, T. Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Build. Environ. 2010, 45, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Bürgisser, M.; Rossi, R.M.; Annaheim, S. Prediction of core body temperature based on skin temperature, heat flux, and heart rate under different exercise and clothing conditions in the heat in young adult males. Front. Physiol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Bach, A.J.E.; Stewart, I.B.; Minett, G.M.; Costello, J.T. Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol. Meas. 2015, 36, R27–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacRae, B.A.; Annaheim, S.; Spengler, C.M.; Rossi, R.M. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Front. Physiol. 2018, 9, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bedford, T.; Warner, C.G. On methods of measuring skin temperature. J. Hyg. 1934, 34, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Murlin, J.R. Skin temperature, its measurement and significance for energy metabolism. Ergebnisse Physiol. Bol. Chem. Exp. Pharmakol. 1939, 42, 153–227. [Google Scholar] [CrossRef]
- Hardy, J.D. The radiation of heat from the human body: II. A comparison of some methods of measurement. J. Clin. Investig. 1934, 13, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.M. Techniques and uses of skin temperature measurements. Ann. N. Y. Acad. Sci. 1964, 121, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.M.; Hardy, J.D. Direct experimental comparison of several surface temperature measuring devices. Rev. Sci. Instrum. 1949, 20, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.M.; Hardy, J.D. Study of thermocouples as skin thermometers. J. Appl. Physiol. 1950, 2, 531–543. [Google Scholar] [CrossRef]
- Evans, J.P.; Wilson, R.E. A comparison of differential measurements of skin temperature using a radiometer, resistance thermometer, and thermocouples. J. Lab. Clin. Med. 1951, 38, 557–560. [Google Scholar] [PubMed]
- Boetcher, S.K.S.; Sparrow, E.M.; Dugay, M. V Characteristics of direct-contact, skin-surface temperature sensors. Int. J. Heat Mass Transf. 2009, 52, 3799–3804. [Google Scholar] [CrossRef]
- Buono, M.J.; Ulrich, R.L. Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol. Meas. 1998, 19, 297–300. [Google Scholar] [CrossRef]
- Tyler, C.J. The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol. Meas. 2011, 32, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Psikuta, A.; Niedermann, R.; Rossi, R.M. Effect of ambient temperature and attachment method on surface temperature measurements. Int. J. Biometeorol. 2014, 58, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacRae, B.A.; Annaheim, S.; Stämpfli, R.; Spengler, C.M.; Rossi, R. Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: Characterisation and correction. Int. J. Biometeorol. 2018, 62, 1861–1872. [Google Scholar] [CrossRef]
- van Marken Lichtenbelt, W.D.; Daanen, H.A.M.; Wouters, L.; Fronczek, R.; Raymann, R.J.E.M.; Severens, N.M.W.; Van Someren, E.J.W. Evaluation of wireless determination of skin temperature using iButtons. Physiol. Behav. 2006, 88, 489–497. [Google Scholar] [CrossRef]
- Harper Smith, A.D.; Crabtree, D.R.; Bilzon, J.L.J.; Walsh, N.P. The validity of wireless iButtons(R) and thermistors for human skin temperature measurement. Physiol. Meas. 2010, 31, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.J.E.; Stewart, I.B.; Disher, A.E.; Costello, J.T. A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS ONE 2015, 10, e0117907. [Google Scholar] [CrossRef] [Green Version]
- McFarlin, B.K.; Venable, A.S.; Williams, R.R.; Jackson, A.W. Comparison of techniques for the measurement of skin temperature during exercise in a hot, humid environment. Biol. Sport 2015, 32, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, V.V.; Utekhin, B.A. Errors in skin temperature measurements due to changes in evaporation under the sensor. Bull. Exp. Biol. Med. 1965, 60, 1210–1212. [Google Scholar] [CrossRef]
- MacRae, B.A.; Rossi, R.M.; Psikuta, A.; Spengler, C.M.; Annaheim, S. Contact skin temperature measurements and associated effects of obstructing local sweat evaporation during mild exercise-induced heat stress. Physiol. Meas. 2018, 39, 075003. [Google Scholar] [CrossRef] [PubMed]
- Krause, B.F. Accuracy and response time comparisons of four skin temperature-monitoring devices. Nurse Anesth. 1993, 4, 55–61. [Google Scholar] [PubMed]
- Lee, E.R.; Kapp, D.S.; Lohrbach, A.W.; Sokol, J.L. Influence of water bolus temperature on measured skin surface and intradermal temperatures. Int. J. Hyperth. 1994, 10, 59–72. [Google Scholar] [CrossRef]
- James, C.A.; Richardson, A.J.; Watt, P.W.; Maxwell, N.S. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J. Therm. Biol. 2014, 45, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Spano, F.; Li, J.; Rossi, R.M. Development of a multi-layered skin simulant for burn injury evaluation of protective fabrics exposed to low radiant heat. Fire Mater. 2019, 43, 144–152. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 139: Textiles—Standard Atmospheres for Conditioning and Testing; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- International Organization for Standardization. ISO 5084: Textiles—Determination of Thickness of Textiles and Textile Products; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- British Standards Institution. BS EN 12127: Determination of Mass Per Unit Area Using Small Samples; British Standards Institution: London, UK, 1998. [Google Scholar]
- International Organization for Standardization. ISO 9237: Textiles—Determination of the Permeability of Fabrics to Air; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- International Organization for Standardization. ISO 11092: Textiles—Physiological effects—Measurement of Thermal and Water-Vapour Resistance under Steady-State Conditions (Sweating Guarded-Hotplate Test); International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Santee, W.R.; Gonzalez, R.R. Characteristics of the thermal environment. In Human Performance Physiology and Environmental Medicine at Terrestrial Extremes; Pandolf, K.B., Sawka, M.N., Gonzalez, R.R., Eds.; Benchmark Press: Indianapolis, IN, USA, 1988; pp. 1–43. [Google Scholar]
- Priego Quesada, J.I.; Martínez Guillamón, N.; de Anda, R.M.C.O.; Psikuta, A.; Annaheim, S.; Rossi, R.M.; Corberán Salvador, J.M.; Pérez-Soriano, P.; Salvador Palmer, R. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys. Technol. 2015, 72, 68–76. [Google Scholar] [CrossRef]
- Xu, F.; Lu, T.J.; Seffen, K.A.; Ng, E.Y.K. Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 2009, 62, 050801. [Google Scholar] [CrossRef]
- Jirak, Z.; Jokl, M.; Stverak, J.; Pechlat, R.; Coufalov, H. Correction factors in skin temperature measurement. J. Appl. Physiol. 1975, 38, 752–756. [Google Scholar] [CrossRef]
- Mahanty, S.D.; Roemer, R.B. The effect of pressure on skin temperature measurements for a disk sensor. J. Biomech. Eng. 1979, 101, 261–266. [Google Scholar] [CrossRef]
- Mahanty, S.D.; Roemer, R.B. Skin temperature probe. J. Biomech. Eng. 1979, 101, 232–238. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, B.; Chen, Y.; Feng, X. Breathable and stretchable temperature sensors inspired by skin. Sci. Rep. 2015, 5, 11505. [Google Scholar] [CrossRef] [Green Version]
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 2018, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Havenith, G.; Lloyd, A.B. Counterpoint to “Infrared cameras overestimate skin temperature during rewarming from cold exposure”. J. Therm. Biol. 2020, 92, 102663. [Google Scholar] [CrossRef] [PubMed]
Custom Thermistor + Tape, °C | Grant Thermistor + Tape, °C | iButton + Tape, °C | iButton Only, °C | |
---|---|---|---|---|
0.2 m·s−1 air velocity | ||||
Bias, from Td | −0.4 (−0.5 to −0.3) | −1.0 (−1.3 to −0.8) | −1.1 (−1.1 to −1.1) | −1.2 (−1.2 to −1.2) |
Bias, from Tu | −0.3 (−0.4 to −0.3) | −1.4 (−1.6 to −1.2) | −1.3 (−1.3 to −1.2) | −1.6 (−1.7 to −1.6) |
0.5 m·s−1 air velocity | ||||
Bias, from Td | −0.6 (−0.6 to −0.5) | −1.5 (−2.0 to −1.1) | −1.6 (−1.7 to −1.6) | −2.3 (−2.4 to −2.1) |
Bias, from Tu | −0.3 (−0.3 to −0.2) | −1.8 (−1.9 to −1.6) | −1.4 (−1.5 to −1.4) | −3.2 (−3.3 to −3.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacRae, B.A.; Spengler, C.M.; Psikuta, A.; Rossi, R.M.; Annaheim, S. A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. Sensors 2021, 21, 4906. https://doi.org/10.3390/s21144906
MacRae BA, Spengler CM, Psikuta A, Rossi RM, Annaheim S. A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. Sensors. 2021; 21(14):4906. https://doi.org/10.3390/s21144906
Chicago/Turabian StyleMacRae, Braid A., Christina M. Spengler, Agnes Psikuta, René M. Rossi, and Simon Annaheim. 2021. "A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors" Sensors 21, no. 14: 4906. https://doi.org/10.3390/s21144906
APA StyleMacRae, B. A., Spengler, C. M., Psikuta, A., Rossi, R. M., & Annaheim, S. (2021). A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. Sensors, 21(14), 4906. https://doi.org/10.3390/s21144906