Highly Sensitive and Transparent Urea-EnFET Based Point-of-Care Diagnostic Test Sensor with a Triple-Gate a-IGZO TFT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process of the Triple-Gate a-IGZO TFT Transducer Unit
2.2. Fabrication Process of the Urease-Immobilized SnO2 Sensing Membrane EG Sensing Unit
2.3. Device Characterization
3. Results
3.1. Electrical Characteristics of the Triple-Gate a-IGZO TFT
3.2. pH Sensing Characteristics of the Triple-Gate a-IGZO TFT-Based pH-ISFET Sensor Platform
3.3. Urea Sensing Characteristics of the Triple-Gate a-IGZO TFT-Based Urea-EnFET Sensor Platform
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Liu, G.; Zhang, Y.; Gao, Q.; Wang, D.; Liu, H.J. Simultaneous determination of ethyl carbamate and urea in alcoholic beverages by high-performance liquid chromatography coupled with fluorescence detection. J. Agric. Food Chem. 2014, 62, 2797–2802. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Simultaneous detection of multiple adulterants in dry milk using macroscale Raman chemical imaging. Food Chem. 2013, 138, 998–1007. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Yang, M.; Guo, M.; Wu, Z.; Shen, G.; Yu, R. Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens. Actuators B Chem. 2006, 114, 1–8. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Wang, Y.; Zhou, M. Effects of environmental factors on the uptake rates of dis-solved nitrogen by a salt-water green alga (Oocystis Borgei snow). Bull. Environ. Contam. Toxicol. 2012, 89, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Verma, N.; Garg, A.K.; Redhy, N. Urea bio-sensors. Sens. Actuators B Chem. 2008, 134, 345–351. [Google Scholar] [CrossRef]
- Chirizzi, D.; Malitesta, C. Potentiometric urea biosensor based on urease-immobilized by an electro-synthesized poly (o-phenylenediamine) film with buffering capability. Sens. Actuators B Chem. 2011, 157, 211–215. [Google Scholar] [CrossRef]
- Dhawan, G.; Sumana, G.; Malhotra, B.D. Recent developments in urea biosensors. Biochem. Eng. J. 2009, 44, 42–52. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE. Trans. Biomed. Eng. 1970, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Waleed Shinwari, M.; Jamal Deen, M.; Landheer, D. Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron. Reliab. 2007, 47, 2025–2057. [Google Scholar] [CrossRef]
- Jankovic, V.; Chang, J.P. HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: Simulation & experiment. J. Electrochem. Soc. 2011, 158, 115–117. [Google Scholar]
- Chi, L.L.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study on extended gate field effect transistor with tin oxide sensing membrane. Mater. Chem. Phys. 2000, 63, 19–23. [Google Scholar] [CrossRef]
- Lyons, C.; Clark, L.C., Jr. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar]
- Caras, S.; Janata, J. Field effect transistor sensitive to penicillin. Anal. Chem. 1980, 52, 1935–1937. [Google Scholar] [CrossRef]
- Gonçalves, D.; Prazeres, D.M.F.; Chu, V.; Conde, J.P. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosens. Bioelectron. 2008, 24, 545–551. [Google Scholar] [CrossRef]
- Castellarnau, M.; Zine, N.; Bausells, J.; Madrid, C.; Juarez, A.; Samitier, J.; Errachid, A. Integrated cell positioning and cell-based ISFET biosensors. Sens. Actuators B Chem. 2007, 120, 615–620. [Google Scholar] [CrossRef]
- Soldatkin, A.P.; Montoriol, J.; Sant, W.; Martelet, C.; Jaffrezic-Renault, N. A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs. Biosens. Bioelectron. 2003, 19, 131–135. [Google Scholar] [CrossRef]
- Bergveld, P. ISFET based enzyme sensors. Biosensors 1987, 3, 161–186. [Google Scholar]
- Meixner, L.K.; Koch, S. Simulation of ISFET operation based on the site-binding model. Sens. Actuators B Chem. 1992, 6, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Jang, H.J.; Park, J.T.; Cho, W.J. SOI dual-gate ISFET with variable oxide capacitance and channel thickness. Solid-State Electron. 2014, 97, 2–7. [Google Scholar] [CrossRef]
- Jang, H.J.; Bae, T.E.; Cho, W.J. Improved sensing performance of polycrystalline-silicon based dual-gate ion-sensitive field-effect transistors using high-k stacking engineered sensing membrane. Appl. Phys. Lett. 2012, 100, 253703. [Google Scholar] [CrossRef]
- Jeon, J.H.; Cho, W.J. Triple Gate Polycrystalline-Silicon-Based Ion-Sensitive Field-Effect Transistor for High-Performance Aqueous Chemical Application. IEEE Electron Device Lett. 2019, 40, 318–320. [Google Scholar] [CrossRef]
- Tsai, C.N.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode. Sens. Actuators B Chem. 2005, 108, 877–882. [Google Scholar] [CrossRef]
- Jamasb, S.; Collins, S.; Smith, R.L. A physical model for drift in pH ISFETs. Sens. Actuators B Chem. 1998, 49, 146–155. [Google Scholar] [CrossRef]
- Lue, C.E.; Yu, T.C.; Yang, C.M.; Pijanowska, D.G.; Lai, C.S. Optimization of urea-EnFET based on Ta2O5 layer with post annealing. Sensors 2011, 11, 4562–4571. [Google Scholar] [CrossRef]
- Yang, C.M.; Wang, I.S.; Lin, Y.T.; Huang, C.H.; Lu, T.F.; Lue, C.E.; Pijanowska, D.G.; Hua, M.Y.; Lai, C.S. Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection. Sens. Actuators B Chem. 2013, 187, 274–279. [Google Scholar] [CrossRef]
- Silva, G.O.; Mulato, M. Urea Detection Using Commercial Field Effect Transistors. ECS J. Solid State Sci. Technol. 2018, 7, Q3014–Q3019. [Google Scholar] [CrossRef] [Green Version]
TG Mode | BG Mode | SG Mode | |
---|---|---|---|
TG | Sweep | Ground | Ground |
BG | Ground | Sweep | Floating |
SG | NA | NA | Sweep |
Operation Mode | VTH (V) | VHYS (V) | μFE (cm2/V·s) | SS (mV/dec) | ION/IOFF (A/A) |
---|---|---|---|---|---|
TG | −0.11 | 0.02 | 7.37 | 157.07 | 6.78 × 107 |
BG | 0.13 | 0.12 | 12.89 | 356.90 | 5.62 × 107 |
SG | −0.28 | 0.27 | 19.38 | 434.13 | 4.48 × 107 |
Operation Mode | Sensitivity (mV/pH) | Hysteresis Voltage (mV) | Drift Rate (mV/h) | |||
---|---|---|---|---|---|---|
Measured | Amplification | Measured | Amplification | Measured | Amplification | |
TG | 55.6 | 1.0 | 12.0 | 1.0 | 13.9 | 1.0 |
BG | 1038.9 | 18.7 | 74.3 | 6.2 | 60.4 | 4.3 |
SG | 2363.9 | 42.5 | 115.1 | 9.6 | 109.4 | 7.9 |
Reference | Transducer | Sensitivity (mV/pUrea) | Range (pUrea) | Linearity (%) |
---|---|---|---|---|
[24] | N-channel Si MOSFET fabricated by ITE | 61.0 | 2–3.25 | NA |
[25] | N-channel Si MOSFET CD4007UB | 62.4 | 2–3.25 | 98.6 |
[26] | N-channel Si MOSFET CD4007UBE | 43.9 | 0.5–2 | NA |
109.0 | 2–3.5 | NA | ||
9.8 | 3.5–5 | NA | ||
This work | Triple-gate a-IGZO TFT | 1272.7 | 0.5–2 | 98.2 |
3632.1 | 2–3.5 | 99.0 | ||
1051.0 | 3.5–5 | 99.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-K.; Cho, W.-J. Highly Sensitive and Transparent Urea-EnFET Based Point-of-Care Diagnostic Test Sensor with a Triple-Gate a-IGZO TFT. Sensors 2021, 21, 4748. https://doi.org/10.3390/s21144748
Cho S-K, Cho W-J. Highly Sensitive and Transparent Urea-EnFET Based Point-of-Care Diagnostic Test Sensor with a Triple-Gate a-IGZO TFT. Sensors. 2021; 21(14):4748. https://doi.org/10.3390/s21144748
Chicago/Turabian StyleCho, Seong-Kun, and Won-Ju Cho. 2021. "Highly Sensitive and Transparent Urea-EnFET Based Point-of-Care Diagnostic Test Sensor with a Triple-Gate a-IGZO TFT" Sensors 21, no. 14: 4748. https://doi.org/10.3390/s21144748
APA StyleCho, S.-K., & Cho, W.-J. (2021). Highly Sensitive and Transparent Urea-EnFET Based Point-of-Care Diagnostic Test Sensor with a Triple-Gate a-IGZO TFT. Sensors, 21(14), 4748. https://doi.org/10.3390/s21144748