A Multi-Sensor System for Sea Water Iodide Monitoring and Seafood Quality Assurance: Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iodide Calibration
2.2. Seafood Analysis
2.3. Threshold System
3. Results
3.1. Iodide Calibration
3.2. Threshold System
3.3. Seafood Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mertz, W. The essential trace elements. Science 1981, 213, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judprasong, K.; Jongjaithet, N.; Chavasit, V. Comparison of methods for iodine analysis in foods. Food Chem. 2016, 193, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Megharaj, M.; Naidu, R. Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry. Talanta 2007, 72, 1842–1846. [Google Scholar] [CrossRef]
- Huang, Z.; Ito, K.; Timerbaev, A.R.; Hirokawa, T. Speciation studies by capillary electrophoresis? simultaneous determination of iodide and iodate in seawater. Anal. Bioanal. Chem. 2004, 378, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
- Chance, R.J.; Tinel, L.; Sherwen, T.; Baker, A.R.; Bell, T.; Brindle, J.; Campos, M.L.A.M.; Croot, P.; Ducklow, H.; Peng, H.; et al. Global sea-surface iodide observations, 1967–2018. Sci. Data 2019, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pearce, E.N. Iodine nutrition: Recent research and unanswered questions. Eur. J. Clin. Nutr. 2018, 72, 1226–1228. [Google Scholar] [CrossRef]
- Babikir, H.E.; Singh, P. Neurology of Nutritional Disorders. In Clinical Child Neurology; Springer: Cham, Switzerland, 2020; pp. 483–527. [Google Scholar]
- Hay, I.; Hynes, K.L.; Burgess, J.R. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. Nutrients 2019, 11, 1974. [Google Scholar] [CrossRef] [Green Version]
- Sorokman, T.; Bachu, M.; Sokolnyk, I.; Popelyuk, N.; Shvygar, L. Borderline forms of mental retardation in pre-pubertal children living in an iodine-deficient region. Med. Sci. 2021, 25, 57–66. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Acad. Nutr. Diet. 2001, 101, 294. [Google Scholar]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers; No. WHO/NHD/01.1; WHO Press: Geneva, Switzerland, 2007; ISBN 97892415955827. [Google Scholar]
- Dunn, J.T.; Crutchfield, H.E.; Gutekunst, R.; Dunn, A.D. Two simple methods for measuring iodine in urine. Thyroid 1993, 3, 119–123. [Google Scholar] [CrossRef]
- Krela-Kaźmierczak, I.; Czarnywojtek, A.; Skoracka, K.; Rychter, A.; Ratajczak, A.; Szymczak-Tomczak, A.; Ruchała, M.; Dobrowolska, A. Is There an Ideal Diet to Protect against Iodine Deficiency? Nutrients 2021, 13, 513. [Google Scholar] [CrossRef]
- Santonico, M.; Pennazza, G.; Grasso, S.; D’Amico, A.; Bizzarri, M. Design and test of a biosensor-based multisensorial system: A proof of concept study. Sensors 2013, 13, 16625–16640. [Google Scholar] [CrossRef] [PubMed]
- He, S.-B.; Chen, F.-Q.; Xiu, L.-F.; Peng, H.-P.; Deng, H.-H.; Liu, A.-L.; Chen, W.; Hong, G.-L. Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan–coated palladium nanozyme. Anal. Bioanal. Chem. 2019, 412, 499–506. [Google Scholar] [CrossRef]
- Huang, Z.; Ito, K.; Morita, I.; Yokota, K.; Fukushi, K.; Timerbaev, A.R.; Watanabe, S.; Hirokawa, T. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: Vertical profiles of dissolved iodine in the Pacific Ocean. J. Environ. Monit. 2005, 7, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, T.; Zargr, F. Highly selective and sensitive iodide sensor based on carbon paste electrode modified with nanosized sulfate-doped α-Fe2O3. Mater. Chem. Phys. 2020, 240, 122118. [Google Scholar] [CrossRef]
- Iniesta, J.; Cooper, H.J.; Marshall, A.G.; Heptinstall, J.; Walton, D.J.; Peterson, I.R. Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Arch. Biochem. Biophys. 2008, 474, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olafsdottir, G.; Nesvadba, P.; Di Natale, C.; Careche, M.; Oehlenschläger, J.; Tryggvadóttir, S.V.; Schubring, R.; Kroeger, M.; Heia, K.; Esaiassen, M.; et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004, 15, 86–93. [Google Scholar] [CrossRef]
- Alimelli, A.; Pennazza, G.; Santonico, M.; Paolesse, R.; Filippini, D.; D’Amico, A.; Lundstrom, I.; Di Natale, C. Fish freshness detection by a computer screen photoassisted based gas sensor array. Anal. Chim. Acta 2007, 582, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, Y.; Mirsky, V.M. Virtual sensor array consisting of a single sensor element with variable affinity: An application for analysis of fish freshness. Sens. Actuators B Chem. 2017, 241, 652–657. [Google Scholar] [CrossRef]
- Lai, F.; Yang, J.; Huang, R.; Wang, Z.; Tang, J.; Zhang, M.; Miao, R.; Fang, Y. Nondestructive Evaluation of Fish Freshness through Nanometer-Thick Fluorescence-Based Amine-Sensing Films. ACS Appl. Nano Mater. 2021, 4, 2575–2582. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Sberveglieri, G. Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sens. Actuators B Chem. 2020, 303, 127217. [Google Scholar] [CrossRef]
- Szulczyński, B.; Armiński, K.; Namieśnik, J.; Gębicki, J. Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks. Sensors 2018, 18, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Liu, J.; Jiang, S.; Wu, C.; Gao, K. The regular interaction pattern among odorants of the same type and its application in odor intensity assessment. Sensors 2017, 17, 1624. [Google Scholar] [CrossRef] [Green Version]
- Hudon, G.; Guy, C.; Hermia, J. Measurement of odor intensity by an electronic nose. J. Air Waste Manag. Assoc. 2000, 50, 1750–1758. [Google Scholar] [CrossRef]
- Tyler, R.H.; Boyer, T.P.; Minami, T.; Zweng, M.M.; Reagan, J.R. Electrical conductivity of the global ocean. Earth Planets Space 2017, 69, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özogul, Y.; Özogul, F.H.; Çiçek, E.; Polat, A.; Kuley, E. Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. Int. J. Food Sci. Nutr. 2009, 60, 464–475. [Google Scholar] [CrossRef]
- Santonico, M.; Parente, F.R.; Grasso, S.; Zompanti, A.; Ferri, G.; D’Amico, A.; Pennazza, G. Investigating a single sensor ability in the characterisation of drinkable water: A pilot study. Water Environ. J. 2016, 30, 253–260. [Google Scholar] [CrossRef]
Applied Voltage (V) 1 | R1 (Ω) | IR1 (μA) |
---|---|---|
−0.87 | 300 K | −2.27 |
170 K | −4.95 | |
80 K | −10.3 | |
45 K | −16.92 | |
20 K | −32 | |
8 K | −58 | |
200 | −120 |
Applied Voltage (V) 1 | R1 (Ω) | IR1 (μA) |
---|---|---|
−0.5 | 2.7 M | 0.19 |
232 K | 2.11 | |
46 K | 10.3 | |
19 K | 22.15 | |
6.5 K | 48.59 | |
200 | 128.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zompanti, A.; Grasso, S.; Sabatini, A.; Vollero, L.; Pennazza, G.; Santonico, M. A Multi-Sensor System for Sea Water Iodide Monitoring and Seafood Quality Assurance: Proof-of-Concept Study. Sensors 2021, 21, 4464. https://doi.org/10.3390/s21134464
Zompanti A, Grasso S, Sabatini A, Vollero L, Pennazza G, Santonico M. A Multi-Sensor System for Sea Water Iodide Monitoring and Seafood Quality Assurance: Proof-of-Concept Study. Sensors. 2021; 21(13):4464. https://doi.org/10.3390/s21134464
Chicago/Turabian StyleZompanti, Alessandro, Simone Grasso, Anna Sabatini, Luca Vollero, Giorgio Pennazza, and Marco Santonico. 2021. "A Multi-Sensor System for Sea Water Iodide Monitoring and Seafood Quality Assurance: Proof-of-Concept Study" Sensors 21, no. 13: 4464. https://doi.org/10.3390/s21134464
APA StyleZompanti, A., Grasso, S., Sabatini, A., Vollero, L., Pennazza, G., & Santonico, M. (2021). A Multi-Sensor System for Sea Water Iodide Monitoring and Seafood Quality Assurance: Proof-of-Concept Study. Sensors, 21(13), 4464. https://doi.org/10.3390/s21134464