Psychophysiological Response According to the Greenness Index of Subway Station Space
Abstract
:1. Introduction
1.1. Research Background and Purpose
1.2. Research Scope and Methods
2. Materials and Methods
2.1. Modularization and Establishment of Interior Landscape Model of Subway Station Space
2.2. Composition of Research Tools
2.2.1. Brainwave Measurement Tool
2.2.2. Questionnaire Development
2.3. Experimental Method
3. Results
3.1. Physiological Response to Different GI for the Interior Landscape of Subway Station Space
3.1.1. α Wave Asymmetry with Different GI for the Interior Landscape of Subway Station Space
3.1.2. High β Wave Asymmetry with Different GI for the Interior Landscape of Subway Station Space
3.2. Psychological Response to Different GI for the Interior Landscape of Subway Station Space
3.2.1. Preference on Subway Interior Landscape Model with Different GI
3.2.2. Attention Restoration Effect of Subway Interior Landscape Models with Different GI
3.2.3. Space Image of Subway Interior Landscape Model with Different GI
3.2.4. Correspondence Analysis on Subway Interior Landscape Models with Different GI
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, K.D.; Koo, M.M.; Ichihara, S. A Study on the Underground Image in Korea and Japan. Korean J. Consum. Advert. Psychol. 2002, 3, 89–106. [Google Scholar]
- Ministry of Environment Republic of Korea. Underground Space Ecological Landscape Guideline; Ministry of Environment Republic of Korea: Sejong, Korea, 2009; pp. 1–16.
- Novosadová, L.; van der Knaap, W. The Role of Biophilic Agents in Building a Green Resilient City; the Case of Birmingham, UK. Sustainability 2021, 13, 5033. [Google Scholar] [CrossRef]
- Andreucci, M.B.; Loder, A.; Brown, M.; Brajković, J. Exploring Challenges and Opportunities of Biophilic Urban Design: Evidence from Research and Experimentation. Sustainability 2021, 13, 4323. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Li, D.; Sullivan, W.C. Impact of views to school landscapes on recovery from stress and mental fatigue. Landsc. Urban Plan. 2016, 148, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Han, A.-R.; Park, S.-A.; Ahn, B.-E. Reduced stress and improved physical functional ability in elderly with mental health problems following a horticultural therapy program. Complementary Ther. Med. 2018, 38, 19–23. [Google Scholar] [CrossRef]
- Hung, S.-H.; Chou, W.-Y.; Chang, C.-Y. A Study on Practicing Qigong and Getting Better Health Benefits in Biophilic Urban Green Spaces. Sustainability 2021, 13, 1692. [Google Scholar] [CrossRef]
- Habre, R.; Coull, B.; Moshier, E.; Godbold, J.; Grunin, A.; Nath, A.; Castro, W.; Schachter, N.; Rohr, A.; Kattan, M. Sources of indoor air pollution in New York City residences of asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.S.; Lee, H.S.; Gong, S.Y.; Koo, H.J. A Study on the National Consciousness of Indoor Air Pollution and Policy Plan; Korea Environment Institute: Sejong, Korea, 2001; pp. 1–175.
- Salamone, F.; Barozzi, B.; Danza, L.; Ghellere, M.; Meroni, I. Correlation between Indoor Environmental Data and Biometric Parameters for the Impact Assessment of a Living Wall in a ZEB Lab. Sensors 2020, 20, 2523. [Google Scholar] [CrossRef]
- Lohr, V.I.; Pearson-Mims, C.H. Physical discomfort may be reduced in the presence of interior plants. HortTechnology 2000, 10, 53–58. [Google Scholar] [CrossRef]
- Ikei, H.; Komatsu, M.; Song, C.; Himoro, E.; Miyazaki, Y. The physiological and psychological relaxing effects of viewing rose flowers in office workers. J. Physiol. Anthropol. 2014, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Bang, K.J.; Kim, S.J. New Interior Landscape, 1st ed.; Landscape Architecture Korea: Seoul, Korea, 2002. [Google Scholar]
- Kwon, K.-J.; Park, B.-J. Effects of Indoor Greening Method on Temperature, Relative Humidity and Particulate Matter Concentration. J. Korean Inst. Landsc. Archit. 2017, 45, 1–10. [Google Scholar]
- Yoo, M. The Impact of Modulized Interior Landscape on Office Workers’ Psychological Wellbeing; Seoul Women’s University: Seoul, Korea, 2013. [Google Scholar]
- Kim, W.J.; Lee, T.K. An Analysis of the Interior Landscape of Subway Station for the Improvement of Index of Greenness in Subway Station Space. J. Archit. Inst. Korea 2021, 37, 35–46. [Google Scholar]
- Song, I.J. Sustainable Activation of Underground Green Space; The Seoul Institution: Seoul, Korea, 2011; pp. 1–18. [Google Scholar]
- Robinette, G.O. Plants, People, and Environmental Quality: A Study of Plants and Their Environmental Functions; US Department of the Interior, National Park Service: Washington, DC, USA, 1972.
- Jo, D.B.; Yeam, D.Y. The Effect of Green Foundation on the Visual Preference. J. Korean Inst. Landsc. Archit. 1985, 13, 95–107. [Google Scholar]
- Choi, J.Y. Psychophysiological Response According to the Index of Greenness of Interior Space; Konkuk University: Seoul, Korea, 2016. [Google Scholar]
- Song, J.E.; Um, S.J.; Kim, S.Y.; Son, K.C.; Lee, J.S. Effect of Visual Recognition of Indoor Plants on the Changes of Human Brain EEG and Image Assessment. Res. Cent. Dev. Adv. Hortic. Technol. 1999, 17, 623. [Google Scholar]
- Lee, S.H. A Comparison of the Models for explaining the Emotion-Improving Effects of the Index of Greenness. Korean J. Health Psychol. 2007, 12, 189–217. [Google Scholar]
- Lee, S.H. The Effects of the Index of Greenness Simulation Based on Restorative Environment Model upon Emotion Improvement. Korean J. Health Psychol. 2007, 12, 439–465. [Google Scholar]
- Lee, S.H. The Context Analysis of the Emotion-Improving Effects of the Index of Greenness: Home and Other Places. Korean J. Health Psychol. 2007, 12, 997–1017. [Google Scholar]
- Tonosaki, K. Measurement of Comfort in Urban Landscape Using the Ratio of Vertical Green Coverage by Chromaticity. Landsc. Res. Jpn. Online 2012, 5, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Ishii, A.; Sagawa, K. Psychological evaluation on the green-occupancy rate—The indoor outdoor comparison and the age-related change. J. Color Sci. Assoc. Jpn. 2012, 36, 114–115. [Google Scholar]
- Hashimoto, Y.; Matsui, N.; Toriumi, Y. Study on Stress Recovery by Indoor Greenery in an Office Space Analysis of Evaluation Structures for Indoor Greenery by Evaluation Grid Method. Trans. Jpn. Soc. Vocat. Educ. Train. 2017, 33, 69–75. [Google Scholar]
- Genjo, K.; Kamohara, D.; Matsumoto, H.; Nakano, T. Feasibility Study on Mental Healthcare using Indoor Plants for Office Workers (Part 4) Effects of Indoor Plants on Workers’ Psychological/Physiological Responses and Indoor Impression Evaluation. In Proceedings of the Technical Papers of Annual Meeting the Society of Heating, Air-conditioning and Sanitary Engineers of Japan, Nagoya, Japan, 12–14 September 2018; pp. 257–260. [Google Scholar]
- Kil, M.J.; Kwon, Y.S.; Bang, K.J. A Study on Adaptation of Several Plants According to Light Intensities 200 Lux and 500 Lux. J. Agric. Life Environ. Sci. 2014, 26, 65–70. [Google Scholar]
- Nam, C.J.; Bang, J.S.; Jang, D.H. The Study on Index of Greeness in Streets of Seoul by Using Automatic Measurement Techniques. KIEAE J. 2012, 12, 93–101. [Google Scholar]
- Schomer, D.L.; Da Silva, F.L. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Hwang, M.K.; Kwon, M.W. A Study on EEG Arousal Effect on Stimulation of Color—Focusing on the Measurement of -Wave against—Wave. J. Integr. Des. Res. 2018, 17, 63–72. [Google Scholar] [CrossRef]
- Jae, H.J. Therapeutic Effect of Interactive Experience in Virtual Garden; Seoul National University: Seoul, Korea, 2019. [Google Scholar]
- Lee, S.M. Effect Analysis of the Stress Reduction on Walking in School Forests; Wonkwang University: Iksan, Korea, 2019. [Google Scholar]
- Jang, H.S. Influences of Visual Element of Ornamental Plants to Emotion or Electroencephalography of Human; Korea University: Seoul, Korea, 2013. [Google Scholar]
- Shin, D.J. A Study on Color Effect of Sickroom Ambience by EEG Expriment; Hongik University: Seoul, Korea, 2018. [Google Scholar]
- Kim, Y.J.; Shin, D.J.; Kim, J.Y. A Study on the Characteristics on Brain Wave of Indoor Space Lighting by EEG Experiment. J. Korea Inst. Spat. Des. 2019, 14, 71–79. [Google Scholar]
- Seok, H.W. Effect Study of Color and Aroma Stimuli on Changes of Brain Waves; Chosun University: Gwangju, Korea, 2020. [Google Scholar]
- Jee, S.D.; Kim, C.B. Electroencephalogram Analysis on Learning Factors during Relaxed or Concentrated Attention according to the Color Temperatures of LED Illuminance. J. Korean Inst. Educ. Facil. 2014, 21, 33–42. [Google Scholar] [CrossRef]
- Lim, H.S.; Chae, M.S.; Park, P.W. Emotional and Behavioral characteristics of Early Childhood comparing Alpha wave and Beta wave Asymmetry at Prefrontal Lobe and with BIS/BAS. J. Korea Acad. Ind. 2011, 12, 2588–2597. [Google Scholar]
- Ha, J.M. Interior Color Affective Model Based on Types of Behavioral and Affective Systerm; Pusan National University: Busan, Korea, 2017. [Google Scholar]
- Ark, S.M. A Study on Psychological and Physiological Responses of Elderly to Color Planning of the Residential Space; Pusan National University: Busan, Korea, 2019. [Google Scholar]
- Henriques, J.B.; Davidson, R.J. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J. Abnorm. Psychol. 1990, 99, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.H. Influence of Cognitive Information Processing and Emotion in Response to Overtraining: P300, EEG Hemispheric Asymmetry; Kyungpook National University: Daegu, Korea, 2016. [Google Scholar]
- Staats, H.; Kieviet, A.; Hartig, T. Where to recover from attentional fatigue: An expectancy-value analysis of environmental preference. J. Environ. Psychol. 2003, 23, 147–157. [Google Scholar] [CrossRef]
- An, O.H. An Experimental Study on the Greenery Ratio of Coffee Shop based the Computer Graphics. Korean Inst. Inter. Des. J. 1998, 60–64. [Google Scholar]
- Seo, Y.H.; Kwon, K.W.; Joo, J.H.; Kim, J.H.; Yoon, Y.H. A Study on the Observer Psychological Change in accordance with Landscape Planting Space in Index of Greenness. Proc. Korean Soc. Environ. Ecol. 2013, 2013, 31–32. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Guidelines for Designing Urban Railway Stations and Transit and Convenience Facilities; Ministry of Land, Infrastructure and Transport: Sejong, Korea, 2018; pp. 1–33.
- Lee, E.C. A Study on the Visual Preference Preference Preference for the Amount of Amount of the Green Perceived Perceived Perceived in the Street; Pusan National University: Busan, Korea, 2008. [Google Scholar]
- Lee, S.H. The Comparisons of Urban, Green Roof, and Forest Scenes by Rating Psychological Indices. Seoul Stud. 2011, 12, 53–65. [Google Scholar]
- Heckman, M.A.; Weil, J.; De Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M. Effects of Oriental Orchid fragrance on Human Brain Waves and Psychology; Korea University: Seoul, Korea, 2016. [Google Scholar]
- Kim, H.-Y. Analysis of variance (ANOVA) comparing means of more than two groups. Restor. Dent. Endod. 2014, 39, 74. [Google Scholar] [CrossRef] [Green Version]
- Suh, E.H. Statistical Analysis, 3rd ed.; Freeacademy: Pajusi, Korea, 2010. [Google Scholar]
- Wang, T.-C.; Phan, B.N.; Nguyen, T.T.T. Evaluating Operation Performance in Higher Education: The Case of Vietnam Public Universities. Sustainability 2021, 13, 4082. [Google Scholar] [CrossRef]
- Choi, Y.S. Understanding and Application of SAS Correspondence Analysis, 1st ed.; Freeacademy: Seoul, Korea, 2001. [Google Scholar]
Below /Above | Place | GI 0% | GI 10% | GI 15% | GI 20% |
---|---|---|---|---|---|
underground subway station | entrance | | | | |
square | | | | | |
passage | | | | | |
faregate | | | | | |
ground subway station | entrance | | | | |
square | | | | | |
passage | | | | | |
faregate | | | | |
Demographic Characteristics | Total | |
---|---|---|
Gender | Male | 30(50.0) |
Female | 30(50.0) | |
Total | 60(100.0) | |
Age | 20 s | 30(50.0) |
30 s | 30(50.0) | |
Total | 60(100.0) |
Interior Landscape Model | N | M(SD) | F | Post-hoc Test | |
---|---|---|---|---|---|
underground subway station | eye-closed | 60 | 0.45(0.92) | 4.454 ** | a |
GI 0% | 60 | 0.47(0.90) | a | ||
GI 10% | 60 | 0.96(0.99) | b | ||
GI 15% | 60 | 0.97(0.81) | b | ||
GI 20% | 60 | 0.87(1.05) | b | ||
total | 300 | 0.75(0.99) | |||
ground subway station | eye-closed | 60 | 0.45(0.92) | 2.743 * | a |
GI 0% | 60 | 0.64(0.80) | ab | ||
GI 10% | 60 | 0.95((1.20) | b | ||
GI 15% | 60 | 0.95(1.06) | b | ||
GI 20% | 60 | 0.93(1.18) | b | ||
total | 300 | 0.78(1.08) |
Interior Landscape Model | N | M(SD) | F | |
---|---|---|---|---|
underground subway station | eye-closed | 60 | 0.07(0.24) | 0.387 (0.818) |
GI 0% | 60 | 0.08(0.28) | ||
GI 10% | 60 | 0.12(0.29) | ||
GI 15% | 60 | 0.11(0.28) | ||
GI 20% | 60 | 0.09(0.28) | ||
total | 300 | 0.10(0.27) | ||
ground subway station | eye-closed | 60 | 0.07(0.24) | 0.363 (0.835) |
GI 0% | 60 | 0.03(0.43) | ||
GI 10% | 60 | 0.09(0.33) | ||
GI 15% | 60 | 0.09(0.35) | ||
GI 20% | 60 | 0.10(0.31) | ||
total | 300 | 0.08(0.33) |
Interior Landscape Model | N | M(SD) | F | Post-hoc Test | |
---|---|---|---|---|---|
underground subway station | GI 0% | 60 | 2.40(0.89) | 85.420 *** | a |
GI 10% | 60 | 4.05(0.67) | c | ||
GI 15% | 60 | 4.48(0.70) | d | ||
GI 20% | 60 | 3.67(0.73) | b | ||
total | 240 | 3.65(1.08) | |||
ground subway station | GI 0% | 60 | 2.92(0.94) | 47.593 *** | a |
GI 10% | 60 | 4.50(0.62) | d | ||
GI 15% | 60 | 4.08(0.67) | c | ||
GI 20% | 60 | 3.57(0.79) | b | ||
total | 240 | 3.77(0.97) |
(I) Model | GI 0% | GI 10% | GI 15% | GI 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(J) Model | GI 10% | GI 15% | GI 20% | GI 0% | GI 15% | GI 20% | GI 0% | GI 10% | GI 20% | GI 0% | GI 10% | GI 15% | ||
underground subway station | Mean Difference (I–J) | −1.650 *** | −2.083 *** | −1.267 *** | 1.650 *** | −0.433 ** | 0.383 * | 2.083 *** | 0.433 ** | 0.817 *** | 1.267 *** | −0.383 * | −0.817 *** | |
Std. Error | 0.14 | 0.15 | 0.15 | 0.14 | 0.13 | 0.13 | 0.15 | 0.13 | 0.13 | 0.15 | 0.13 | 0.13 | ||
95% Confidence Interval | Lower Bound | −2.03 | −2.46 | −1.65 | 1.27 | −0.76 | 0.05 | 1.70 | 0.11 | 0.48 | 0.88 | −0.72 | −1.16 | |
Upper Bound | −1.27 | −1.70 | −0.88 | 2.03 | −0.11 | 0.72 | 2.46 | 0.76 | 1.16 | 1.65 | −0.05 | −0.48 | ||
ground subway station | Mean Difference (I–J) | −1.583 *** | −1.167 *** | −0.650 *** | 1.583 *** | 0.417 ** | 0.933 *** | 1.167 *** | −0.417 ** | 0.517 ** | 0.650 *** | −0.933 *** | −0.517 ** | |
Std. Error | 0.15 | 0.15 | 0.16 | 0.15 | 0.12 | 0.13 | 0.15 | 0.12 | 0.13 | 0.16 | 0.13 | 0.13 | ||
95% Confidence Interval | Lower Bound | −1.96 | −1.56 | −1.06 | 1.20 | 0.11 | 0.59 | 0.78 | −0.73 | 0.17 | 0.24 | −1.27 | −0.87 | |
Upper Bound | −1.20 | −0.78 | −0.24 | 1.96 | 0.73 | 1.27 | 1.56 | −0.11 | 0.87 | 1.06 | −0.59 | −0.17 |
Interior Landscape Model | Too Low | Low | Suitable | High | Very High | Total | χ2 | |
---|---|---|---|---|---|---|---|---|
underground subway station | GI 10% | 1 | 21 | 32 | 6 | - | 60 | 100.418 *** |
(1.7) | (35.0) | (53.3) | (10.0) | (100.0) | ||||
GI 15% | - | 2 | 42 | 16 | - | 60 | ||
(3.3) | (70.0) | (26.7) | (100.0) | |||||
GI 20% | - | - | 14 | 29 | 17 | 60 | ||
(23.3) | (48.3) | (28.3) | (100.0) | |||||
total | 1 | 23 | 88 | 51 | 17 | 180 | ||
(0.6) | (12.8) | (48.9) | (28.3) | (9.4) | (100.0) | |||
ground subway station | GI 10% | - | - | 40 | 2 | - | 60 | 120.948 *** |
(66.7) | (3.3) | (100.0) | ||||||
GI 15% | - | - | 33 | 26 | 1 | 60 | ||
(55.0) | (43.3) | (1.7) | (100.0) | |||||
GI 20% | - | - | 8 | 30 | 22 | 60 | ||
(13.3) | (50.0) | (36.7) | (100.0) | |||||
total | - | 18 | 81 | 58 | 23 | 180 | ||
(10.0) | (45.0) | (32.2) | (12.8) | (100.0) |
Interior Landscape Model | N | M(SD) | F | Post-hoc Test | |
---|---|---|---|---|---|
underground subway station | GI 0% | 60 | 2.39(0.57) | 100.832 *** | a |
GI 10% | 60 | 4.04(0.72) | b | ||
GI 15% | 60 | 4.42(0.72) | c | ||
GI 20% | 60 | 4.24(0.71) | b | ||
total | 240 | 3.78(1.09) | |||
ground subway station | GI 0% | 60 | 2.65(0.70) | 65.146 *** | a |
GI 10% | 60 | 4.22(0.68) | b | ||
GI 15% | 60 | 4.39(0.78) | b | ||
GI 20% | 60 | 4.24(0.95) | b | ||
total | 240 | 3.88(1.06) |
(I) Model | GI 0% | GI 10% | GI 15% | GI 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(J) Model | GI 10% | GI 15% | GI 20% | GI 0% | GI 15% | GI 20% | GI 0% | GI 10% | GI 20% | GI 0% | GI 10% | GI 15% | ||
underground subway station | Mean Difference (I–J) | −1.655 *** | −2.036 *** | −1.860 *** | 1.655 *** | −0.381 * | −0.205 | 2.036 *** | 0.381 * | 0.176 | 1.860 *** | 0.205 | −0.176 | |
Std. Error | 0.12 | 0.12 | 0.13 | 0.12 | 0.13 | 0.15 | 0.12 | 0.13 | 0.14 | 0.13 | 0.15 | 0.14 | ||
95% Confidence Interval | Lower Bound | −1.96 | −2.34 | −2.21 | 1.35 | −0.72 | −0.58 | 1.73 | 0.04 | −0.20 | 1.51 | −0.17 | −0.55 | |
Upper Bound | −1.35 | −1.73 | −1.51 | 1.96 | −0.04 | 0.17 | 2.34 | 0.72 | 0.55 | 2.21 | 0.58 | 0.20 | ||
ground subway station | Mean Difference (I–J) | −1.567 *** | −1.740 *** | −1.590 *** | 1.567 *** | −0.174 | −0.024 | 1.740 *** | 0.174 | 0.150 | 1.590 **** | 0.024 | −0.150 | |
Std. Error | 0.13 | 0.14 | 0.15 | 0.13 | 0.13 | 0.15 | 0.14 | 0.13 | 0.16 | 0.15 | 0.15 | 0.16 | ||
95% Confidence Interval | Lower Bound | −1.89 | −2.09 | −1.99 | 1.24 | −0.52 | −0.42 | 1.39 | −0.18 | −0.27 | 1.19 | −0.37 | −0.57 | |
Upper Bound | −1.24 | −1.39 | −1.19 | 1.89 | 0.18 | 0.37 | 2.09 | 0.52 | 0.57 | 1.99 | 0.42 | 0.27 |
Space Image | Interior Landscape Model | N | M(SD) | F | Post-hoc Test |
---|---|---|---|---|---|
dark–bright | GI 0% | 60 | 2.30(0.85) | 85.713 *** | a |
GI 10% | 60 | 4.28(0.96) | c | ||
GI 15% | 60 | 4.75(0.54) | d | ||
GI 20% | 60 | 3.70(1.11) | b | ||
total | 240 | 3.76(1.28) | |||
uncomfortable –comfortable | GI 0% | 60 | 2.38(0.83) | 60.398 *** | a |
GI 10% | 60 | 4.20(0.99) | c | ||
GI 15% | 60 | 4.52(0.93) | c | ||
GI 20% | 60 | 3.32(1.07) | b | ||
total | 240 | 3.60(1.26) | |||
not beautiful –beautiful | GI 0% | 60 | 1.95(0.83) | 69.546 *** | a |
GI 10% | 60 | 4.02(1.16) | c | ||
GI 15% | 60 | 4.45(0.87) | d | ||
GI 20% | 60 | 3.27(1.16) | b | ||
total | 240 | 3.42(1.39) | |||
unpleasant –pleasant | GI 0% | 60 | 3.07(0.73) | 46.744 *** | a |
GI 10% | 60 | 4.42(0.87) | c | ||
GI 15% | 60 | 4.67(0.66) | c | ||
GI 20% | 60 | 3.62(1.03) | b | ||
total | 240 | 3.94(1.05) | |||
unharmonious –harmonious | GI 0% | 60 | 2.68(0.91) | 33.054 *** | a |
GI 10% | 60 | 4.03(1.29) | b | ||
GI 15% | 60 | 4.42(0.98) | b | ||
GI 20% | 60 | 3.07(1.15) | a | ||
total | 240 | 3.55(1.30) | |||
un-environmentally friendly –environmentally friendly | GI 0% | 60 | 1.55(0.79) | 231.781 *** | a |
GI 10% | 60 | 4.47(0.93) | b | ||
GI 15% | 60 | 4.85(0.48) | c | ||
GI 20% | 60 | 4.25(0.79) | b | ||
total | 240 | 3.78(1.51) |
Space Image | Interior Landscape Model | N | M(SD) | F | Post-hoc Test |
---|---|---|---|---|---|
dark–bright | GI 0% | 60 | 3.45(1.11) | 25.105 *** | a |
GI 10% | 60 | 4.68(0.65) | b | ||
GI 15% | 60 | 4.50(0.87) | b | ||
GI 20% | 60 | 3.50(1.27) | a | ||
total | 240 | 4.03(1.15) | |||
uncomfortable –comfortable | GI 0% | 60 | 2.90(0.88) | 35.081 *** | a |
GI 10% | 60 | 4.43(0.87) | b | ||
GI 15% | 60 | 4.32(1.07) | b | ||
GI 20% | 60 | 3.35(1.07) | a | ||
total | 240 | 3.75(1.17) | |||
not beautiful –beautiful | GI 0% | 60 | 2.43(0.87) | 58.371 *** | a |
GI 10% | 60 | 4.55(0.67) | c | ||
GI 15% | 60 | 4.20(1.18) | c | ||
GI 20% | 60 | 3.18(1.11) | b | ||
total | 240 | 3.59(1.28) | |||
unpleasant –pleasant | GI 0% | 60 | 3.20(0.92) | 41.435 *** | a |
GI 10% | 60 | 4.75(0.44) | b | ||
GI 15% | 60 | 4.42(0.98) | b | ||
GI 20% | 60 | 3.47(1.10) | a | ||
total | 240 | 3.96(1.10) | |||
unharmonious –harmonious | GI 0% | 60 | 2.83(0.87) | 36.839 *** | a |
GI 10% | 60 | 4.45(0.93) | b | ||
GI 15% | 60 | 4.27(1.15) | b | ||
GI 20% | 60 | 3.07(1.23) | a | ||
total | 240 | 3.65(1.27) | |||
un-environmentally friendly –environmentally friendly | GI 0% | 60 | 1.88(0.74) | 282.180 *** | a |
GI 10% | 60 | 4.80(0.51) | c | ||
GI 15% | 60 | 4.92(0.28) | c | ||
GI 20% | 60 | 4.32(0.91) | b | ||
total | 240 | 3.98(1.40) |
(I) Model | GI 0% | GI 10% | GI 15% | GI 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(J) Model | GI 10% | GI 15% | GI 20% | GI 0% | GI 15% | GI 20% | GI 0% | GI 10% | GI 20% | GI 0% | GI 10% | GI 15% | ||
dark–bright | Mean Difference (I–J) | −1.983 *** | −2.450 *** | −1.400 *** | 1.983 *** | −0.467 * | 0.583 * | 2.450 *** | 0.467 * | 1.050 *** | 1.400 * | −0.583 * | −1.050 *** | |
Std. Error | 0.17 | 0.13 | 0.18 | 0.17 | 0.14 | 0.19 | 0.13 | 0.14 | 0.16 | 0.18 | 0.19 | 0.16 | ||
95% Confidence Interval | Lower Bound | −2.41 | −2.79 | −1.87 | 1.55 | −0.84 | 0.09 | 2.11 | 0.10 | 0.63 | 0.93 | −1.08 | −1.47 | |
Upper Bound | −1.55 | −2.11 | −0.93 | 2.41 | −0.10 | 1.08 | 2.79 | 0.84 | 1.47 | 1.87 | −0.09 | −0.63 | ||
uncomfortable –comfortable | Mean Difference (I–J) | −1.817 *** | −2.133 *** | −0.933 *** | 1.817 *** | −0.317 | 0.883 * | 2.133 * | 0.317 | 1.200 * | 0.933 * | −0.883 * | −1.200 * | |
Std. Error | 0.17 | 0.16 | 0.17 | 0.17 | 0.18 | 0.19 | 0.16 | 0.18 | 0.18 | 0.17 | 0.19 | 0.18 | ||
95% Confidence Interval | Lower Bound | −2.25 | −2.55 | −1.39 | 1.38 | −0.77 | 0.39 | 1.72 | −0.14 | 0.72 | 0.48 | −1.37 | −1.68 | |
Upper Bound | −1.38 | −1.72 | −0.48 | 2.25 | 0.14 | 1.37 | 2.55 | 0.77 | 1.68 | 1.39 | −0.39 | −0.72 | ||
not beautiful –beautiful | Mean Difference (I–J) | −2.067 *** | −2.500 *** | −1.317 *** | 2.067 *** | −0.433 | 0.750 ** | 2.500 *** | 0.433 | 1.183 *** | 1.317 *** | −0.750 ** | −1.183 *** | |
Std. Error | 0.18 | 0.16 | 0.18 | 0.18 | 0.19 | 0.21 | 0.16 | 0.19 | 0.19 | 0.18 | 0.21 | 0.19 | ||
95% Confidence Interval | Lower Bound | −2.55 | −2.91 | −1.80 | 1.59 | −0.92 | 0.20 | 2.09 | −0.05 | 0.69 | 0.83 | −1.30 | −1.67 | |
Upper Bound | −1.59 | −2.09 | −0.83 | 2.55 | 0.05 | 1.30 | 2.91 | 0.92 | 1.67 | 1.80 | −0.20 | −0.69 | ||
unpleasant –pleasant | Mean Difference (I–J) | −1.350 *** | −1.600 *** | −0.550 ** | 1.350 *** | −0.250 | 0.800 *** | 1.600 *** | 0.250 | 1.050 *** | 0.550 ** | −0.800 *** | −1.050 *** | |
Std. Error | 0.15 | 0.13 | 0.16 | 0.15 | 0.14 | 0.17 | 0.13 | 0.14 | 0.16 | 0.16 | 0.17 | 0.16 | ||
95% Confidence Interval | Lower Bound | −1.73 | −1.93 | −0.98 | 0.97 | −0.62 | 0.35 | 1.27 | −0.12 | 0.64 | 0.12 | −1.25 | −1.46 | |
Upper Bound | −0.97 | −1.27 | −0.12 | 1.73 | 0.12 | 1.25 | 1.93 | 0.62 | 1.46 | 0.98 | −0.35 | −0.64 | ||
unharmonious –harmonious | Mean Difference (I–J) | −1.350 *** | −1.733 *** | −0.383 | 1.350 *** | −0.383 | 0.967 *** | 1.733 *** | 0.383 | 1.350 *** | 0.383 | −0.967 *** | −1.350 *** | |
Std. Error | 0.20 | 0.17 | 0.19 | 0.20 | 0.21 | 0.22 | 0.17 | 0.21 | 0.19 | 0.19 | 0.22 | 0.19 | ||
95% Confidence Interval | Lower Bound | −1.88 | −2.18 | −0.88 | 0.82 | −0.93 | 0.39 | 1.28 | −0.16 | 0.84 | −0.11 | −1.55 | −1.86 | |
Upper Bound | −0.82 | −1.28 | 0.11 | 1.88 | 0.16 | 1.55 | 2.18 | 0.93 | 1.86 | 0.88 | −0.39 | −0.84 | ||
un-environmentally friendly –environmentally friendly | Mean Difference (I–J) | −2.917 *** | −3.300 *** | −2.700 *** | 2.917 *** | −0.383 * | 0.217 | 3.300 *** | 0.383 * | 0.600 *** | 2.700 *** | −0.217 | −0.600 *** | |
Std. Error | 0.16 | 0.12 | 0.14 | 0.16 | 0.14 | 0.16 | 0.12 | 0.14 | 0.12 | 0.14 | 0.16 | 0.12 | ||
95% Confidence Interval | Lower Bound | −3.33 | −3.61 | −3.08 | 2.51 | −0.74 | −0.19 | 2.99 | 0.03 | 0.29 | 2.32 | −0.63 | −0.91 | |
Upper Bound | −2.51 | −2.99 | −2.32 | 3.33 | −0.03 | 0.63 | 3.61 | 0.74 | 0.91 | 3.08 | 0.19 | −0.29 |
(I) Model | GI 0% | GI 10% | GI 15% | GI 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(J) Model | GI 10% | GI 15% | GI 20% | GI 0% | GI 15% | GI 20% | GI 0% | GI 10% | GI 20% | GI 0% | GI 10% | GI 15% | ||
dark–bright | Mean Difference (I–J) | −1.233 *** | −1.050 *** | −0.050 | 1.233 *** | 0.183 | 1.183 *** | 1.050 *** | −0.183 | 1.000 *** | 0.050 | −1.183 *** | −1.000 *** | |
Std. Error | 0.17 | 0.18 | 0.22 | 0.17 | 0.14 | 0.18 | 0.18 | 0.14 | 0.20 | 0.22 | 0.18 | 0.20 | ||
95% Confidence Interval | Lower Bound | −1.67 | −1.53 | −0.62 | 0.80 | −0.18 | 0.70 | 0.57 | −0.55 | 0.48 | −0.52 | −1.67 | −1.52 | |
Upper Bound | −0.80 | −0.57 | 0.52 | 1.67 | 0.55 | 1.67 | 1.53 | 0.18 | 1.52 | 0.62 | −0.70 | −0.48 | ||
uncomfortable –comfortable | Mean Difference (I–J) | −1.533 *** | −1.417 *** | −0.450 | 1.533 *** | 0.117 | 1.083 *** | 1.417 *** | −0.117 | 0.967 *** | 0.450 | −1.083 *** | −0.967 *** | |
Std. Error | 0.16 | 0.18 | 0.18 | 0.16 | 0.18 | 0.18 | 0.18 | 0.18 | 0.20 | 0.18 | 0.18 | 0.20 | ||
95% Confidence Interval | Lower Bound | −1.95 | −1.88 | −0.92 | 1.12 | −0.35 | 0.62 | 0.95 | −0.58 | 0.46 | −0.02 | −1.55 | −1.47 | |
Upper Bound | −1.12 | −0.95 | 0.02 | 1.95 | 0.58 | 1.55 | 1.88 | 0.35 | 1.47 | 0.92 | −0.62 | −0.46 | ||
not beautiful –beautiful | Mean Difference (I–J) | −2.117 *** | −1.767 *** | −0.750 *** | 2.117 *** | 0.350 | 1.367 *** | 1.767 *** | −0.350 | 1.017 *** | 0.750 *** | −1.367 *** | −1.017 *** | |
Std. Error | 0.14 | 0.19 | 0.18 | 0.14 | 0.18 | 0.17 | 0.19 | 0.18 | 0.21 | 0.18 | 0.17 | 0.21 | ||
95% Confidence Interval | Lower Bound | −2.49 | −2.26 | −1.23 | 1.75 | −0.11 | 0.93 | 1.27 | −0.81 | 0.47 | 0.27 | −1.81 | −1.56 | |
Upper Bound | −1.75 | −1.27 | −0.27 | 2.49 | 0.81 | 1.81 | 2.26 | 0.11 | 1.56 | 1.23 | −0.93 | −0.47 | ||
unpleasant –pleasant | Mean Difference (I–J) | −1.550 *** | −1.217 *** | −0.267 | 1.550 *** | 0.333 | 1.283 *** | 1.217 *** | −0.333 | 0.950 *** | 0.267 | −1.283 *** | −0.950 *** | |
Std. Error | 0.13 | 0.17 | 0.18 | 0.13 | 0.14 | 0.15 | 0.17 | 0.14 | 0.19 | 0.18 | 0.15 | 0.19 | ||
95% Confidence Interval | Lower Bound | −1.89 | −1.67 | −0.75 | 1.21 | −0.03 | 0.88 | 0.77 | −0.70 | 0.46 | −0.21 | −1.68 | −1.44 | |
Upper Bound | −1.21 | −0.77 | 0.21 | 1.89 | 0.70 | 1.68 | 1.67 | 0.03 | 1.44 | 0.75 | −0.88 | −0.46 | ||
unharmonious–harmonious | Mean Difference (I–J) | −1.633 *** | −1.450 *** | −0.250 | 1.633 *** | 0.183 | 1.383 *** | 1.450 *** | −0.183 | 1.200 *** | 0.250 | −1.383 *** | −1.200 *** | |
Std. Error | 0.16 | 0.19 | 0.20 | 0.16 | 0.19 | 0.20 | 0.19 | 0.19 | 0.22 | 0.20 | 0.20 | 0.22 | ||
95% Confidence Interval | Lower Bound | −2.06 | −1.94 | −0.76 | 1.20 | −0.31 | 0.86 | 0.96 | −0.68 | 0.63 | −0.26 | −1.90 | −1.77 | |
Upper Bound | −1.20 | −0.96 | 0.26 | 2.06 | 0.68 | 1.90 | 1.94 | 0.31 | 1.77 | 0.76 | −0.86 | −0.63 | ||
un-environmentally friendly –environmentally friendly | Mean Difference (I–J) | −2.917 *** | −3.033 *** | −2.433 *** | 2.917 *** | −0.117 | 0.483 ** | 3.033 *** | 0.117 | 0.600 *** | 2.433 *** | −0.483 ** | −0.600 *** | |
Std. Error | 0.12 | 0.10 | 0.15 | 0.12 | 0.08 | 0.14 | 0.10 | 0.08 | 0.12 | 0.15 | 0.14 | 0.12 | ||
95% Confidence Interval | Lower Bound | −3.22 | −3.30 | −2.83 | 2.61 | −0.31 | 0.13 | 2.77 | −0.08 | 0.28 | 2.04 | −0.84 | −0.92 | |
Upper Bound | −2.61 | −2.77 | −2.04 | 3.22 | 0.08 | 0.84 | 3.30 | 0.31 | 0.92 | 2.83 | −0.13 | −0.28 |
Dimension | Singular Value | Inertia | Chi Square | Sig. | Proportion of Inertia | Confidence Singular Value | ||
---|---|---|---|---|---|---|---|---|
Accounted for | Cumulative | Standard Deviation | Correlation 2 | |||||
1 | 0.188 | 0.035 | - | - | 0.461 | 0.461 | 0.017 | 0.047 |
2 | 0.165 | 0.027 | - | - | 0.354 | 0.815 | 0.019 | - |
3 | 0.106 | 0.011 | - | - | 0.146 | 0.961 | - | - |
4 | 0.044 | 0.002 | - | - | 0.026 | 0.987 | - | - |
5 | 0.029 | 0.001 | - | - | 0.011 | 0.997 | - | - |
6 | 0.014 | 0.000 | - | - | 0.002 | 1.000 | - | - |
7 | 0.003 | 0.000 | - | - | 0.000 | 1.000 | - | - |
Total | - | 0.076 | 175.024 | 0.000 a | 1.000 | 1.000 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-J.; Lee, T.-K. Psychophysiological Response According to the Greenness Index of Subway Station Space. Sensors 2021, 21, 4360. https://doi.org/10.3390/s21134360
Kim W-J, Lee T-K. Psychophysiological Response According to the Greenness Index of Subway Station Space. Sensors. 2021; 21(13):4360. https://doi.org/10.3390/s21134360
Chicago/Turabian StyleKim, Won-Ji, and Tae-Kyung Lee. 2021. "Psychophysiological Response According to the Greenness Index of Subway Station Space" Sensors 21, no. 13: 4360. https://doi.org/10.3390/s21134360
APA StyleKim, W.-J., & Lee, T.-K. (2021). Psychophysiological Response According to the Greenness Index of Subway Station Space. Sensors, 21(13), 4360. https://doi.org/10.3390/s21134360