3-D Terrain Node Coverage of Wireless Sensor Network Using Enhanced Black Hole Algorithm
Abstract
:1. Introduction
2. Black Hole Algorithm and 3-D Node Coverage Problem of WSN
2.1. Black Hole Algorithm
2.2. 3-D Node Coverage Problem of WSN
- If the node is at the grid intersection, the value of the third dimension of the location is the height of the three-dimensional terrain which showed in Figure 1.
- Otherwise, the value of the third dimension of the location is the height of the closest grid intersection.
3. Enhanced Black Hole Algorithm
Algorithm 1: The Enhanced Black Hole Algorithm |
|
4. Enhanced Black Hole Algorithm Applied on Node Coverage of WSN
5. Experiment Results and Discuss
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LD | Linear dichroism |
MEMS | Micro-electro mechanical systems |
PSO | Particle swarm optimization |
ACO | Ant colony optimization |
CSO | Cat swarm optimization |
ABC | Artificial bee colony |
GA | Genetic algorithm |
DE | Difference evolution |
QUATRE | Quasi-affine transformation evolution |
WSN | Wireless sensor network |
EBH | Enhanced black hole |
BH | Black hole |
LOS | Line of sight |
References
- Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.J. An Affinity Propagation-Based Self-Adaptive Clustering Method for Wireless Sensor Networks. Sensors 2019, 19, 2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S. Multi-objective mapping method for 3D environmental sensor network deployment. IEEE Commun. Lett. 2019, 23, 1231–1235. [Google Scholar] [CrossRef]
- Wang, J.; Ju, C.; Kim, H.J.; Sherratt, R.S.; Lee, S. A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs. Clust. Comput. 2019, 22, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Lee, K.C.; Chung, Y.C. A Delaunay triangulation based method for wireless sensor network deployment. Comput. Commun. 2007, 30, 2744–2752. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Venayagamoorthy, G.K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 663–675. [Google Scholar] [CrossRef]
- Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.J. A PSO based energy efficient coverage control algorithm for wireless sensor networks. Comput. Mater. Contin. 2018, 56, 433–446. [Google Scholar]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report, Technical Report-tr06; Erciyes University, Engineering Faculty, Computer: Kayseri, Turkey, 2005. [Google Scholar]
- TSai, P.W.; Pan, J.S.; Liao, B.Y.; Chu, S.C. Enhanced artificial bee colony optimization. Int. J. Innov. Comput. Inf. Control 2009, 5, 5081–5092. [Google Scholar]
- Wang, H.; Wu, Z.; Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.S. Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 2014, 279, 587–603. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. Citeseer 1995, 4, 1942–1948. [Google Scholar]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Wu, Z. Particle swarm optimization with adaptive mutation for multimodal optimization. Appl. Math. Comput. 2013, 221, 296–305. [Google Scholar] [CrossRef]
- Melin, P.; Olivas, F.; Castillo, O.; Valdez, F.; Soria, J.; Valdez, M. Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 2013, 40, 3196–3206. [Google Scholar] [CrossRef]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Chu, S.C.; Roddick, J.F.; Pan, J.S. Ant colony system with communication strategies. Inf. Sci. 2004, 167, 63–76. [Google Scholar] [CrossRef]
- Chu, S.C.; Roddick, J.F.; Su, C.J.; Pan, J.S. Constrained ant colony optimization for data clustering. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji, 26–30 August 2019; Springer: Berlin, Germany, 2004; pp. 534–543. [Google Scholar]
- Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 7–11 August 2006; Springer: Berlin, Germany, 2006; pp. 854–858. [Google Scholar]
- Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y.; Hao, S.P. Parallel cat swarm optimization. In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 5 September 2008; Volume 6, pp. 3328–3333. [Google Scholar]
- Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y. Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst. Appl. 2012, 39, 6309–6319. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C. A Hybrid Differential Evolution Algorithm and Its Application in Unmanned Combat Aerial Vehicle Path Planning. IEEE Access 2020, 8, 17691–17712. [Google Scholar] [CrossRef]
- Meng, Z.; Pan, J.S.; Tseng, K.K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowl. Based Syst. 2019, 168, 80–99. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.S.; Chu, S.C. A Parallel Multi-Verse Optimizer for Application in Multilevel Image Segmentation. IEEE Access 2020, 8, 32018–32030. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Prayogo, D. Symbiotic Organisms Search Algorithm: Theory, recent advances and applications. Expert Syst. Appl. 2019, 119, 184–209. [Google Scholar] [CrossRef]
- Chu, S.C.; Du, Z.G.; Pan, J.S. Symbiotic Organism Search Algorithm with Multi-Group Quantum-Behavior Communication Scheme Applied in Wireless Sensor Networks. Appl. Sci. 2020, 10, 930. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Pan, J.S. QUasi-affine TRansformation Evolutionary (QUATRE) algorithm: A parameter-reduced differential evolution algorithm for optimization problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4082–4089. [Google Scholar]
- Meng, Z.; Pan, J.S. A competitive QUasi-Affine TRansformation Evolutionary (C-QUATRE) algorithm for global optimization. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1644–1649. [Google Scholar]
- Liu, N.; Pan, J.S.; Xue, J.Y. An Orthogonal QUasi-Affine TRansformation Evolution (O-QUATRE) Algorithm for Global Optimization. In Advances in Intelligent Information Hiding and Multimedia Signal Processing; Springer: Berlin, Germany, 2020; pp. 57–66. [Google Scholar]
- Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Dao, T.K.; Pan, J.S.; Nguyen, T.T.; Chu, S.C.; Shieh, C.S. Compact bat algorithm. In Intelligent Data Analysis and Its Applications, Volume II; Springer: Berlin, Germany, 2014; pp. 57–68. [Google Scholar]
- Tian, A.Q.; Chu, S.C.; Pan, J.S.; Cui, H.; Zheng, W.M. A Compact Pigeon-Inspired Optimization for Maximum Short-Term Generation Mode in Cascade Hydroelectric Power Station. Sustainability 2020, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Chen, J. A Compact co-Firefly Algorithm for Matching Ontologies. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 2629–2632. [Google Scholar]
- Xue, X.; Pan, J.S. A Compact Co-Evolutionary Algorithm for sensor ontology meta-matching. Knowl. Inf. Syst. 2018, 56, 335–353. [Google Scholar] [CrossRef]
- Chu, S.C.; Xue, X.; Pan, J.S.; Wu, X. Optimizing ontology alignment in vector space. J. Internet Technol. 2020, 21, 15–22. [Google Scholar]
- Sun, C.; Jin, Y.; Cheng, R.; Ding, J.; Zeng, J. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 2017, 21, 644–660. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014. [Google Scholar] [CrossRef]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin, Germany, 2010; pp. 65–74. [Google Scholar]
- Hu, P.; Pan, J.S.; Chu, S.C.; Chai, Q.W.; Liu, T.; Li, Z.C. New Hybrid Algorithms for Prediction of Daily Load of Power Network. Appl. Sci. 2019, 9, 4514. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.W.; Chu, S.C.; Pan, J.S.; Hu, P.; Zheng, W.M. A parallel WOA with two communication strategies applied in DV-Hop localization method. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Pan, J.S.; Hu, P.; Chu, S.C. Novel Parallel Heterogeneous Meta-Heuristic and Its Communication Strategies for the Prediction of Wind Power. Processes 2019, 7, 845. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Pan, J.S.; Dao, T.K. An improved flower pollination algorithm for optimizing layouts of nodes in wireless sensor network. IEEE Access 2019, 7, 75985–75998. [Google Scholar] [CrossRef]
- Gustafson, D.E.; Kessel, W.C. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1979; pp. 761–766. [Google Scholar]
- Chen, S.M.; Manalu, G.M.T.; Pan, J.S.; Liu, H.C. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques. IEEE Trans. Cybern. 2013, 43, 1102–1117. [Google Scholar] [CrossRef]
- Chen, S.M.; Chang, Y.C.; Pan, J.S. Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 Gaussian fuzzy sets and genetic algorithms. IEEE Trans. Fuzzy Syst. 2012, 21, 412–425. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, C.A.; Lo, C.C. Vehicle localization and velocity estimation based on mobile phone sensing. IEEE Access 2016, 4, 803–817. [Google Scholar] [CrossRef]
- Chen, C.H.; Hwang, F.J.; Kung, H.Y. Travel time prediction system based on data clustering for waste collection vehicles. IEICE Trans. Inf. Syst. 2019, 102, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Topcuoglu, H.R.; Ermis, M.; Sifyan, M. Positioning and utilizing sensors on a 3-D terrain part I—Theory and modeling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 41, 376–382. [Google Scholar] [CrossRef]
- Temel, S.; Unaldi, N.; Kaynak, O. On deployment of wireless sensors on 3-D terrains to maximize sensing coverage by utilizing cat swarm optimization with wavelet transform. IEEE Trans. Syst. Man Cybern. Syst. 2013, 44, 111–120. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
Algorithms | Common Parameters | Unique Parameters |
---|---|---|
Particle Swarm Optimization | Population Size = 30 Iterations = 1000 Dimensions = 20 Limited Areas ∈ [−100, 100] | c = 2.0, w ∈ [0.4, 0.9], Velocity Range ∈ [10, 10] |
Whale Optimization Algorithms | a ∈ [0, 2], b = 1 | |
Black Hole | NULL | |
Enhanced Black Hole | w ∈ [0.4, 2.0], = 0.9, = 0.6, = 0.3 |
Functions | PSO | WOA | BH | EBH | ||||
---|---|---|---|---|---|---|---|---|
Variable | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
f1 | ||||||||
f2 | ||||||||
f3 | ||||||||
f4 | ||||||||
f5 | ||||||||
f6 | ||||||||
f7 | ||||||||
f8 | ||||||||
f9 | ||||||||
f10 | ||||||||
f11 | ||||||||
f12 | ||||||||
f13 | ||||||||
f14 | ||||||||
f15 | ||||||||
f16 | ||||||||
f17 | ||||||||
f18 | ||||||||
f19 | ||||||||
f20 | ||||||||
f21 | ||||||||
f22 | ||||||||
f23 | ||||||||
f24 | ||||||||
f25 | ||||||||
f26 | ||||||||
f27 | ||||||||
f28 |
Functions | PSO | WOA | BH | EBH |
---|---|---|---|---|
30 | 45.55% | 47.88% | 47.82% | 48.01% |
40 | 55.53% | 57.43% | 57.75% | 57.85% |
50 | 62.88% | 62.51% | 64.99% | 65.06% |
60 | 69.44% | 71.50% | 71.32% | 71.26% |
70 | 74.71% | 76.43% | 76.43% | 76.54% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.-S.; Chai, Q.-W.; Chu, S.-C.; Wu, N. 3-D Terrain Node Coverage of Wireless Sensor Network Using Enhanced Black Hole Algorithm. Sensors 2020, 20, 2411. https://doi.org/10.3390/s20082411
Pan J-S, Chai Q-W, Chu S-C, Wu N. 3-D Terrain Node Coverage of Wireless Sensor Network Using Enhanced Black Hole Algorithm. Sensors. 2020; 20(8):2411. https://doi.org/10.3390/s20082411
Chicago/Turabian StylePan, Jeng-Shyang, Qing-Wei Chai, Shu-Chuan Chu, and Ning Wu. 2020. "3-D Terrain Node Coverage of Wireless Sensor Network Using Enhanced Black Hole Algorithm" Sensors 20, no. 8: 2411. https://doi.org/10.3390/s20082411
APA StylePan, J.-S., Chai, Q.-W., Chu, S.-C., & Wu, N. (2020). 3-D Terrain Node Coverage of Wireless Sensor Network Using Enhanced Black Hole Algorithm. Sensors, 20(8), 2411. https://doi.org/10.3390/s20082411