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Abstract: Two new hybrid algorithms are proposed to improve the performances of the meta-heuristic
optimization algorithms, namely the Grey Wolf Optimizer (GWO) and Shuffled Frog Leaping
Algorithm (SFLA). Firstly, it advances the hierarchy and position updating of the mathematical model
of GWO, and then the SGWO algorithm is proposed based on the advantages of SFLA and GWO.
It not only improves the ability of local search, but also speeds up the global convergence. Secondly,
the SGWOD algorithm based on SGWO is proposed by using the benefit of differential evolution
strategy. Through the experiments of the 29 benchmark functions, which are composed of the
functions of unimodal, multimodal, fixed-dimension and composite multimodal, the performances
of the new algorithms are better than that of GWO, SFLA and GWO-DE, and they greatly balances
the exploration and exploitation. The proposed SGWO and SGWOD algorithms are also applied to
the prediction model based on the neural network. Experimental results show the usefulness for
forecasting the power daily load.
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1. Introduction

Global optimization problems are common in engineering, economics and many sciences, and that
their general formulation is as in the equations below.

optimize −→x ∈ f j(x), (j = 1, 2, ..., m) (1)

−→x = (x1, x2, ..., xn) (2)
−→
l ≤ −→x ≤ −→u (3)

where
−→
l =(l1,l2,...,ln), −→u =(u1,u2,...,un). −→x is a decision vector, and n is the dimension of −→x . The area

covered by the decision vectors is called the search range. −→u and
−→
l are the upper and lower bounds

of the search range , and they also have n dimensions. f j(x) is called the cost or fitness function. If m
equals 1, f1(x) is a single fitness function. In the paper, it only considers a single objective, so f1(x) is
described as f (x).

The meta-heuristic algorithm is an improvement of the heuristic algorithm and it adopts the
methods of local search and stochastic, which provides a solution to an acceptance of optimization
problem to some extent. Meta-heuristic is an iterative process. Through the combination of different
concepts, the process uses the algorithm to exploration and exploitation in the search range. Learning
strategy is used to acquire and master information to find the approximate optimal solution during
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the process. The algorithm is an effective way to solve global optimization problems, and it has the
characteristics of generality, stability, and fast convergence. It includes two criteria, exploration and
exploitation. Exploitation reflects the ability of finding the best around a good range, while exploration
reflects the ability of searching for new range. At the beginning, it should search the whole range as
much as possible, then through using exploitation it searches more carefully around the good solution.
But they are contradictory. Too small exploration leads to convergence too fast and easy falling into
local optimum; however, too small exploitation makes the algorithm converge too slowly.

The No Free Lunch (NFL) theorem considers that there is no meta-heuristic algorithm applying
for all optimization problems [1,2]. In other words, an algorithm shows very promising results on a
set of issues, but it doesn’t perform well on another set of issues. So it needs putting forward a new
algorithm to get high performance in certain specific areas.

Over the past decades, a large number of meta-heuristics are inspired by natural behaviors [3–5],
such as, Genetic Algorithm (GA) [6–8], Differential Evolution (DE) Algorithm [9–12], Grey Wolf
Optimizer (GWO) Algorithm [13–17], Particle Swarm Optimization (PSO) Algorithm [18–21], Artificial
Bee Colony (ABC) Algorithm [22–24], Cat Swarm Optimization (CSO) [25–27], Artificial Fish Swarm
Algorithm (AFSA) [28,29], Ant Colony Optimization (ACO) Algorithm [30–34], Shuffled Frog Leaping
Algorithm (SFLA) [35–40], Biogeography Based Optimization (BBO) Algorithm [41–43], QUasi-Affine
TRansformation Evolutionary (QUATRE) Algorithm [44–47] and so on. Because they all have some
defects, many researchers also introduce hybrid algorithms to improve the defects [48–55].

The rest of the paper is organized as follows: some related research works are described in the
Section 2. Section 3 improves the model of GWO, and then puts forward two algorithms, SGWO and
SGWOD. Section 4 testifies the performances of GWO, GWO-DE, SFLA, SGWO and SGWOD by 29
benchmark functions. Section 5 uses the algorithms to predict daily power load based on the neural
network. Finally, it concludes the works of the paper and gives some advice to go on work.

2. Related Research Works

In the section, it briefly reviews the basic theories of Grey Wolf Optimizer (GWO), Differential
Evolution (DE) and Shuffled Frog Leaping Algorithm (SFLA). GWO and SFLA are swarm intelligence
algorithms, and DE is a heuristic random search algorithm based on group difference.

2.1. Grey Wolf Optimizer

GWO mimics the behaviors of grey wolf, such as social hierarchy, searching and hunting prey [13].
Each wolf represents a candidate solution to the problem to be solved, and the prey represents the
optimal to be found. GWO refers to the first three optimal solutions respectively named alpha (α),
beta (β) and delta (δ). The remaining candidates are collectively referred to as omega (ω). Based on
the locations of the three optimal solutions, the omegas can update their positions. GWO has the
characteristics of strong convergence, few parameters and easy realization.

The wolf’s position is expressed as follows:

−→
D = |−→B · −→Xp(t)−

−→
Xi (t)| (4)

−→
Xi (t + 1) =

−→
Xi (t)−

−→
A · −→D (5)

where
−→
Xi and

−→
Xp are the position vectors of i and prey, respectively; t represents the current iteration;

both
−→
A and

−→
B are coefficient vectors, which are calculated as follows:

−→
A = 2−→a · −→r1 −−→a (6)

−→
B = 2−→r2 (7)

With the iteration process, a linearly decreases from 2 to 0. −→r1 and−→r2 are random vectors between [0, 1].
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During hunting, the alpha, beta and delta guides the wolf pack. A wolf first computes its distance
to them according to Equations (8) and (9), and then updates its position by Equation (10).

−→
Dα = |−→B1 ·

−→
Xα −

−→
Xi |,
−→
Dβ = |−→B2 ·

−→
Xβ −

−→
Xi |,
−→
Dδ = |

−→
B3 ·
−→
Xδ −

−→
Xi | (8)

−→
X1 =

−→
Xα −

−→
A1 ·
−→
Dα,
−→
X2 =

−→
Xβ −

−→
A2 ·
−→
Dβ,
−→
X3 =

−→
Xδ −

−→
A3 ·
−→
Dδ (9)

−→
Xi (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(10)

where
−→
Xα,
−→
Xβ and

−→
Xδ respectively represent the positions of α, β and δ.

−→
Dα,
−→
Dβ and

−→
Dδ respectively

represent the distances between α, β, δ and i.
Figure 1 shows the complete flow chart of GWO. It randomly initializes the wolf pack in a limited

space and calculates the fitness of each wolf. Then it selects the top three best wolves to update the
positions of the wolves according to the Equations (8) to (10), and finally outputs the optimal.

it < Max_iteration 

Start

Initialize related params, eg. 
Max_iteration 

Xα = the best wolf
Xβ = the second wolf
Xδ = the third wolf

Random initialize the 
positions of the whole 

population 
Xi (i = 1, 2, ..., n)

Output bestScore

Calculate the fitness(f(x) , 
x∈Xi) of each wolf

bestScore = Xα

it = it +1

Update a, A and C

Update the position of each 
wolf by Equations (8) to (10)

End

No

Yes

Figure 1. The complete flow chart of GWO.

2.2. Differential Evolution

Like other evolutionary algorithms, DE operates on the candidate solutions of the population [9],
but the population reproduction is different from others. The evolutionary process of DE contains three
operations, mutation, crossover and selection, which is very similar to GA. It preserves the individual
optimal and shares the information with the population, that is, the optimization problem is solved
through cooperation and competition among individuals.

A new individual is produced through adding the differences between two individuals to another,
called mutation. The new one is compared with the individuals in the current population, called
crossover; if its fitness is better, the old individual will be replaced by it in the next generation,
otherwise the old one is still preserved, which is called selection. It evaluates the optimal of each
generation during the evolution process. But in the process of solving problems, DE may lead to
decrease the diversity of the population and cause the algorithm to stagnate.
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It randomly selects two different individuals in the population, then amplifies the difference and
performs synthesis with the mutated one. For each objective xi(t), Equation (11) generates a mutant.

mi(t + 1) = xr1(t) + λ ∗ (xr2(t)− xr3(t)) (11)

where xr1(t) denotes the individual r1 in the tth generator. r1, r2 and r3 are different individuals,
which are randomly selected from the population. λ is a constant factor between [0, 2] and it is used to
control the proportion of the differential variation (xr2(t)− xr3(t)).

A new trial is generated by crossover operation and it increases the diversity of the population.
It is produced as following:

ci,j(t + 1) =

{
mi,j(t + 1) i f (rand(j) ≤ pCR) or j = randi(i)
xi,j(t + 1) i f (rand(j) > pCR) or j! = randi(i)

(12)

where rand(j) is a random constant between [0, 1] and pCR is a crossover constant between [0, 1].
randi(i) is a randomly chosen integer between [1, n]; j is the dimension of an individual.

According to Equation (13), if ci(t + 1) is better than xi(t), it will replace xi in the (t + 1)th

generation. Figure 2 shows the complete flow chart of DE. It randomly initializes the population and
calculates the fitness of each individual. Then it generates a new individual through random selecting
three ones to perform mutation and crossover, and it determines whether to replace the original with
the new one by Equation (13). Finally it outputs the optimal.

xi(t + 1) =

{
ci(t + 1) i f ( f (ci(t + 1)) < f (xi(t)))
xi(t) else

(13)

it < Max_iteration 

Start

Initialize related params, eg. 
Max_iteration, pCR

Random choose three different 
individuals

Generate a mutant by
Equation (11)

Random initialize the 
positions of the whole 

population 
Xi (i = 1, 2, ..., n)

Output bestScore

Update bestScore
it = it +1

Generate a new individual and 
perform cross trial by

Equation (12)

Update individual by Equation
(13)

End

No

Yes

Calculate the fitness(f(x) , 
x∈Xi) of each individual
Get the optimal bestScore

Figure 2. The complete flow chart of DE.
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2.3. Shuffled Frog Leaping Algorithm

SFLA utilizes the shuffled complex evolution strategy, which is a post-heuristic computing [35].
A group of frogs are divided into several subgroups. Different subgroups are considered to be a
collection of frogs with different ideas and each subgroup is allowed to independently develop.
After several evolutions, the all subgroups are reunited. It has the functions of global information
exchange and local search, which achieves the balance between local search and global search.

Firstly, the frogs are sorted in descending order according to their fitness. Supposed the whole
population consists of m memeplexes and each contains n frogs, so it satisfies the relationship
N = m× n. The first, second and mth frogs are divided into the first, second and mth memeplexes
respectively. Then the (m + 1)th frog is reassigned to the first memeplex, and so on. Figure 3 shows the
memeplex partitioning process. Where the 1st, (m + 1)th, . . . , ((n− 1) ∗m + 1)th frogs are divided into
the 1st memeplex and the mth, (m + m)th, . . . , (n ∗m)th frogs are divided into the mth memeplex.

1st memeplex.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2nd memeplex

mth memeplex

1st frog

2nd frog

mth frog
(m+1)th frog
(m+2)th frog

((n-1)*m+1)th frog

((n-1)*m+2)th frog

(n*m)th frog

.

.

.

.

.

.

.

.

.

Figure 3. The memeplex partitioning process.

Xa is the best frog in the population, while Xz and Xp respectively represent the worst and best
frogs of each memeplex. Each memeplex performs local search, and the position of the frog is updated
as follows:

X = ` · (Xp − Xz) (14)

X′z = Xz + X, ||X|| ≤ Xm (15)

X = ` · (Xa − Xz) (16)

where ` is a random factor between [0 1]. Xm indicates the maximum value that the frog is allowed to
change position. If X′z is better than Xz, the latter is replaced by the former. Otherwise, Xa replaces Xp

and it continues to calculate X′z by Equations (15) and (16). If it still hasn’t improved, Xz is replaced
by a random position. When the local search is completed, the frogs in all memeplexes are combined
and sorted, then they are divided into memeplexs to continue to do local search. Figures 4 and 5 show
the whole flow chart of SFLA. It randomly initializes the frog group, calculates the fitness of each
frog and sorts the frogs by the fitness. The group is divided into different meme groups to execute
sub-processes. After the sub-processes are executed, all frogs are merged and sorted again, and then
the sub-processes are re-executed until the algorithm ends and it outputs the optimal. During the
sub-process, it updates the frogs in the worst position by Equations (14) to (16).
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it < Max_iteration 

Start

Initialize related params, eg. 
Max_iteration, memetic 

groups

Divide memetic groups

Random initialize the 
positions of the whole 

population 
Xi (i = 1, 2, ..., n)

Output bestScore

Update bestScore
it = it +1

Perform local search for each 
memeplex

Combine the all memetic 
groups

Sort the frogs by fitnesses

End

No

Yes

Calculate the fitness (f(x) , 
x∈Xi) of each frog

Sort the frogs by fitnesses
Get the optimal bestScore

Figure 4. The overall flow chart of SFLA.

it < Max_iteration 

Start

Get Xa, Xp and Xz

Output local memetic 
group

Update Xa, Xp, Xz and bestScore
it = it +1

Calculate Xz' by  Equations 
(14) and (15)

End

No

Yes

Yes

fitness(Xz')  < fitness(Xz)
Calculate Xz' by  Equations 

(16) and (15)

fitness(Xz')  < fitness(Xz)

No

Yes
Update Xz by random position

Calculate the fitness of Xz

Update Xa, Xp, Xz and 
bestScore
it = it +1

No

Figure 5. The flow chart of each memeplex.

3. New Hybrid Algorithms Based on GWO, SFLA and DE

GWO has a great performance in convergence, but it’s easy to fall into the trap of local optimum.
While SFLA has a great outstanding in global search, but its convergence is unsatisfactory. In the
section, a new hybrid algorithm SGWO, based on GWO and SFLA, is proposed to overcome their
defects. In a biological community, the species with the worst adaptability tend to be eliminated,
or they must have to gain greater viability through variation. SGWOD draws the learning strategies
from SGWO and DE to get better performance.

3.1. Advanced the Model of GWO

Before starting to design the hybrid algorithms, we first modify the mathematical model of
GWO. When the fitness of the alpha is not as good as a new wolf, the former is replaced by the latter.
But the old alpha may also have some important information, so it needs proposing a new hierarchy
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model to utilize the experience of the old one. By Equation (10), we know that it doesn’t consider the
different importance of the alpha, beta and delta on guiding attack, so a new position updating model
is introduced.

3.1.1. A New Hierarchy Model

The alpha is responsible for directing the wolf pack during hunting. Although it has great power,
it is responsible for the safety and the livelihood of the wolves, and it is also under the supervision of
the pack. There is not inheritance to the position of the alpha, and it needs accepting the challenges of
other wolves. If it is defeated, the winner becomes the new leader (new alpha). The beta and delta
are usually composed of experienced members of the wolves, which assist the alpha to complete the
hunting. Once the alpha can’t lead the wolf pack to capture prey well, they replace it.

The new mathematical model is established based on the above descriptions. If the alpha doesn’t
lead the wolf pack to catch prey well, it degenerates into the beta, and it doesn’t directly turn into an
omega. The updating equations of the alpha are defined as follows:

α(t)→
{

β(t) i f ( f (α(t)) > f (i(t)))
α(t) else

(17)

α′(t) = i(t) i f ( f (α(t)) > f (i(t))) (18)

where i represents a candidate solution; t indicates the current iteration; f is the fitness function; α′

means the new alpha.
If the beta hunts better than i, it is not replaced by i. But if it does not good at assisting the alpha,

it becomes the delta and it doesn’t turn into an omega wolf. The beta is updated as follows:

β(t)→
{

δ(t) i f ( f (β(t)) > f (i(t)))
β(t) else

(19)

β′(t) = i(t) i f ( f (β(t)) > f (i(t))) (20)

where β′(t) represents the new beta.
If the delta hunts better than i, it will not be replaced by i. But if it performs bad in hunting,

it becomes an omega. The updating equations of the delta are defined as follows:

δ(t)→
{

δ(t) i f ( f (δ(t)) > f (i(t)))
ω(t) else

(21)

δ′(t) = i(t) i f ( f (β(t)) > f (i(t))) (22)

where δ′(t) represents the new delta.

3.1.2. A New Position Updating Model

Supposed an integer sequence R = {1, 2, . . . , i, . . . , n}, Ri represents the probability of i. If it
follows a triangular discrete distribution, so the ith in the sequence has the following probability.

Pi =
2i

n(n + 1)
(23)

The wolves work together in hunting, that the alpha leads the pack to attack prey and the beta
and delta assist it to complete the attack. Therefore, the alpha plays a decisive role in the position
updating of the pack, while the beta and delta play an auxiliary roles. But when the wolves update
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their positions, the Equation (10) doesn’t consider the decisive roles of the alpha, beta, and delta.
The fitness is sorted from good to bad, then a new position equation is proposed as follows.

Pi =
2(n + 1− i)

n(n + 1)
(24)

X =
∑3

i=1 PiXi

∑3
i=1 Pi

(25)

where Pi represents the importance of Xi and i is selected from the alpha, beta and delta.

3.2. Hybrid Algorithm SGWO

From the position updating equations we have known that GWO makes all members converge
quickly towards the optimal , while SFLA only makes the worst members converge to the optimum.
But GWO may fall into local optimum due to too fast convergence, SFLA achieves global information
exchange by combining memeplexes, which avoids local convergence. So through combining two
or more methods, the hybrid algorithm effectively solves the problems. The process of SGWO is
described as follows:

Step 1. Sort the population by fitness.
Step 2. Divide the population into different meme groups.
Step 3. Perform the following local search for each meme group.

Step 3.1. Find the alpha, beta and delta.
Step 3.2. Access each wolf and update the alpha, beta and delta by Equations (17)–(22).
Step 3.3. Update the position of each wolf by Equation (25).
Step 3.4. Repeatedly do 3.1–3.3 until it meets the ending conditions of local search.

Step 4. Combine the meme groups and repeatedly do 1–3 until it meets the ending conditions of
the algorithm.

The pseudo code of SGWO is described in Algorithm 1.

Algorithm 1 SGWO

Initialize related parameters
Initialize the positions of the population
Calculate the fitness of each wolf
nPop = the number of the population
n_Memeplex = the number of Memeplex
I = reshape(1:nPop, n_Memeplex, []);
for i = 1 : Max_iteration do

memes = cell(n_Memeplex, 1);
Sort the population by fitness
for k = 1 : n_Memeplex do

memesk = pop(I(k,:));
memesk = RunSGWO(parameters);
pop(I(k,:)) = memesk;

end for
end for

The pseudo code of RunSGWO function is described in Algorithm 2.
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Algorithm 2 RunSGWO

Find the alpha, beta and delta.
for i = 1 : Max_iteration do

for s = 1 : subPopSize do

flag = 1;
fitness = fobj(pop(s).Position);
if fitness < alpha then

beta = alpha;
alpha = pop(s);
flag = 0;

end if
if f itness < beta&& f lag == 1 then

delta = beta;
beta = pop(s);
flag = 0;

end if
if f itness < delta&& f lag == 1 then

beta = pop(s);
end if
Update the position of s by Equation (25)
Calculate the fitness of s

end for
end for

3.3. Hybrid Algorithm SGWOD

Gene mutation occurs in the organism when a creature breeds its next generation. If the mutation
is beneficial to the organism, the variants are filtered through the environment and mutant genes are
preserved in offspring. After each iteration, the wolves of a memeplex are updated by DE. That is,
it eliminates the wolves with the worst fitness. At the same time, new ones are generated to replace
the eliminated. The process of SGWOD is described as follows:

Step 1. Sort the population by fitness.
Step 2. Divide the population into different meme groups.
Step 3. Perform the following local search for each meme group.

Step 3.1. Find the alpha, beta and omega.
Step 3.2. Access each wolf and update the alpha, beta and omega by Equations (17)–(22).
Step 3.3. Update the position of each wolf by Equation (25).
Step 3.4 Access each wolf, randomly mutate and cross, if the new mutant is better than the

old, it is replaced by the new one.
Step 3.5. Repeatedly do 3.1–3.4 until it meets the ending conditions of the local search.

Step 4. Combine the meme groups and repeatedly do 1–3 until it meets the ending conditions of
the algorithm.

4. Experiments and Results

In the section, we use 29 benchmark functions to test. These classical functions, listed in Tables 1–4,
are used by many researchers [56,57]. Space is the boundary of its search range, Dim represents the
dimension of the function, and fmin indicates the optimum of it.
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Table 1. Unimodal benchmark functions.

Function Space Dim fmin

f1(x) = ∑n
i=1 x2

i [−100, 100] 30 0
f2(x) = ∑n

i=1 |xi|+ ∏n
i=1 |xi| [−10, 10] 30 0

f3(x) = ∑n
i=1(∑

i
j−1 xj)

2 [−100, 100] 30 0
f4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 30 0

f5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] [−30, 30] 30 0

f6(x) = ∑n
i=1([xi + 0.5])2 [−100, 100] 30 0

f7(x) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28] 30 0

Table 2. Multimodal benchmark functions.

Function Space Dim fmin

f8(x) = ∑n
i=1−xisin(

√
|xi|) [−500, 500] 30 −12,569

f9(x) = ∑n
i=1[x

2
i − 10cos(2πxi) + 10] [−5.12, 5.12] 30 0

f10(x) = −20exp(−0.2

√
1
n ∑n

i=1 x2
i )− exp(

1
n ∑n

i=1

cos(2πxi)) + 20 + e
[−32, 32] 30 0

f11(x) =
1

4000 ∑n
i=1 x2

i −∏n
i=1 cos(

xi√
i
) + 1 [−600, 600] 30 0

f12(x) =
π

n
{10sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10sin2(π

yi+1)] + (yn − 1)2}+ ∑n
i=1 u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4
u(xi, a, k, m) =


k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 30 0

f13(x) = 0.1{sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi

+1)] + (xn − 1)2[1 + sin2(2πxn)]}+ ∑n
i=1 u(xi, 10, 100, 4)

[−50, 50] 30 0

Table 3. Fixed-dimension multimodal benchmark functions.

Function Space Dim fmin

f14(x) = ( 1
500 ∑25

j=1
1

j + ∑2
i=1(xi − aij)6

)−1 [−65, 65] 2 1

f15(x) = ∑11
i=1[ai −

x1(b2
i + bix2)

b2
i + bix3 + x4

]2 [−5, 5] 4 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] 2 −1.0316
f17(x) = (x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)2 + 10(1− 1

8π )cosx1 + 10 [−5, 5] 2 0.398
f18(x) = [1 + (x1 + x2 + 1)2

(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]
×[30 + (2x1 − 3x2)

2 × (18− 32x1 + 12x2
1 + 48x2

−36x1x2 + 27x2
2)]

[−2, 2] 2 3

f19(x) = −∑4
i=1 ciexp(−∑3

j=1 aij(xj − pij)
2) [1, 3] 3 −3.86

f20(x) = −∑4
i=1 ciexp(−∑6

j=1 aij(xj − pij)
2) [0, 1] 6 −3.32

f21(x) = −∑5
i=1[(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.1532

f22(x) = −∑7
i=1[(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.4028

f23(x) = −∑10
i=1[(X− ai)(X− ai)

T + ci]
−1 [0, 10] 4 −10.5363
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Table 4. Composite multimodal benchmark functions.

Function Space Dim fmin

F24(CF1)
f1, f2, f3, ..., f10 = Sphere Function
[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, λ3, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]

[−5, 5] 30 0

F25(CF2)
f1, f2, f3, ..., f10 = Griewank′s Function

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, λ3, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]

[−5, 5] 30 0

F26(CF3)
f1, f2, f3, ..., f10 = Griewank′s Function

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, λ3, ..., λ10] = [1, 1, 1, ..., 1]

[−5, 5] 30 0

F27(CF4)
f1, f2 = Ackley′sFunction, f3, f4 = Rastrigin′s Function,

f5, f6 = WeierstrassFunction, f7, f8 = Griewank′s Function
f9, f10 = Sphere Function

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, λ3, ..., λ10] =

[5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

[−5, 5] 30 0

F28(CF5)
f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Function,

f5, f6 = Griewank′sFunction, f7, f8 = Ackley′s Function
f9, f10 = Sphere Function

[σ1, σ2, σ3, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, λ3, ..., λ10] =

[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

[−5, 5] 30 0

F29(CF6)
f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Function,

f5, f6 = Griewank′s Function, f7, f8 = Ackley′s Function
f9, f10 = Sphere Function

[σ1, σ2, σ3, ..., σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
[λ1, λ2, λ3, ..., λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,

0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32, 0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

[−5, 5] 30 0

4.1. Experimental Results

For verifying the results, SGWO and SGWOD are compared to GWO, SFLA and GWO-DE, which
is an improved GWO with differential evolution [55]. They run 100 times on each benchmark function,
and the testing parameters are listed in Table 5. Table 6 shows the statistical results of the algorithms,
including average (AVG) and standard deviation (STD).

Table 5. Parameters setting of each algorithm.

Algorithm Main Parameters Setting

GWO Population_number = 300, Max_iteration = 100
GWO-DE Population_number = 300, Max_iteration = 100, pCR = 0.01, λ = [0.02, 0.08]

SFLA
Population_number = 300, Max_iteration = 100, memeplex = 5,
Parents_number = 3, Sons_number = 3, Memeplex_iteration = 2

SGWO
Population_number = 300, Max_iteration = 100, memeplex = 5,

Memeplex_iteration = 2

SGWOD
Population_number = 300, Max_iteration = 100, pCR = 0.01,

λ = [0.02, 0.08], memeplex = 5, Memeplex_iteration = 2
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Table 6. The statistical results of the algorithms.

Function SGWO SGWOD GWO SFLA GWO-DE

AVG STSD AVG STSD AVG STSD AVG STSD AVG STSD

f1 1.68× 10−38 6.50× 10−38 1.70× 10−38 3.10× 10−38 9.71× 10−8 6.50× 10−38 3.26× 104 1.14× 104 3.50× 10−10 4.41× 10−10

f2 1.23× 10−21 1.58× 10−21 2.05× 10−21 2.00× 10−21 8.23× 10−4 1.58× 10−21 1.46× 1039 6.50× 1039 3.45× 10−5 2.78× 10−5

f3 4.73× 10−7 1.24× 10−6 5.94× 10−5 1.74× 10−4 7.81× 10−1 1.24× 10−6 8.02× 104 1.71× 104 1.35× 10−1 1.55× 10−1

f4 6.65× 10−15 7.04× 10−15 6.13× 10−15 6.94× 10−15 3.71× 10−2 7.04× 10−15 7.78× 101 4.71× 100 1.03× 10−2 5.58× 10−3

f5 2.85× 101 2.13× 10−1 2.62× 101 1.28× 10−1 2.68× 101 8.37× 10−1 9.09× 107 4.41× 107 2.64× 101 6.24× 10−1

f6 4.03× 10−1 1.13× 10−1 1.38× 10−4 2.91× 10−5 2.22× 10−1 1.13× 10−1 3.46× 104 1.10× 104 8.58× 10−5 2.85× 10−5

f7 4.50× 10−3 5.55× 10−3 1.53× 10−3 1.40× 10−3 5.15× 10−3 5.50× 10−3 1.71× 109 8.32× 108 6.93× 10−3 6.17× 10−3

f8 −1.34× 1020 9.48× 1020 −3.70× 1037 2.21× 1038 −6.50× 103 9.48× 1020 −2.38× 1019 5.87× 1019 −6.93× 103 2.98× 103

f9 0 0 0 0 1.51× 101 0 3.80× 102 2.51× 101 2.73× 100 5.37× 100

f10 4.48× 10−15 3.55× 10−16 4.41× 10−15 3.55× 10−16 6.77× 10−5 3.55× 10−16 1.89× 101 1.73× 100 3.46× 10−6 2.11× 10−6

f11 0 0 1.32× 10−4 1.32× 10−3 6.33× 10−3 0 2.49× 102 1.13× 102 3.88× 10−3 7.19× 10−3

f12 1.89× 10−2 1.88× 10−2 1.42× 10−5 4.04× 10−6 1.99× 10−2 1.88× 10−2 1.59× 108 1.07× 108 4.34× 10−6 1.24× 10−6

f13 2.00× 10−1 5.85× 10−2 3.03× 10−3 4.83× 10−3 2.33× 10−1 5.85× 10−2 3.22× 108 1.71× 108 8.13× 10−3 4.17× 10−2

f14 2.27× 100 2.08× 100 2.50× 100 6.53× 10−1 1.42× 100 2.08× 100 9.98× 10−1 9.77× 10−8 1.40× 100 7.05× 10−1

f15 6.80× 10−4 3.62× 10−4 5.30× 10−4 2.64× 10−4 9.72× 10−4 3.62× 10−4 1.73× 10−3 6.42× 10−4 1.20× 10−3 3.94× 10−3

f16 −1.03× 100 2.19× 10−7 −1.03× 100 5.02× 10−9 −1.03× 100 2.19× 10−7 −1.03× 100 7.85× 10−7 −1.03× 100 1.54× 10−8

f17 3.98× 10−1 1.21× 10−4 3.98× 10−1 1.22× 10−7 3.98× 10−1 1.21× 10−4 3.98× 10−01 4.70× 10−9 3.98× 10−1 5.97× 10−7

f18 3.00× 100 4.59× 10−3 3.00× 100 2.53× 10−5 3.00× 100 4.59× 10−3 3.00× 100 2.71× 10−7 3.00× 100 6.36× 10−6

f19 −3.85× 100 1.01× 10−2 −3.86× 100 4.74× 10−7 −3.86× 100 1.01× 10−2 −3.86× 100 3.39× 10−8 −3.86× 100 3.47× 10−4

f20 −3.26× 100 6.81× 10−2 −3.29× 100 5.03× 10−2 −3.24× 100 6.81× 10−2 −3.25× 100 5.93× 10−2 −3.25× 100 6.34× 10−2

f21 −9.86× 100 5.78× 10−1 −1.02× 101 1.63× 10−4 −9.50× 100 5.78× 10−1 −7.22× 100 3.29× 100 −1.00× 101 8.74× 10−1

f22 −1.00× 101 7.60× 10−1 −1.03× 101 7.48× 10−1 −1.03× 101 7.60× 10−1 −9.38× 100 2.34× 100 −1.04× 101 7.39× 10−4

f23 −1.01× 101 6.40× 10−1 −1.05× 101 1.73× 10−4 −1.03× 101 6.40× 10−1 −9.84× 100 2.15× 100 −1.05× 101 7.57× 10−4

f24 2.22× 101 7.23× 101 2.39× 100 1.11× 101 2.74× 100 2.11× 101 5.38× 101 1.64× 102 9.43× 10−1 4.86× 100

f25 3.60× 101 1.19× 102 1.55× 101 5.34× 101 2.08× 101 7.37× 101 6.66× 101 2.05× 102 2.16× 101 7.95× 101

f26 6.12× 101 1.88× 102 2.98× 101 9.49× 101 2.67× 101 8.47× 101 1.09× 102 3.30× 102 2.67× 101 8.40× 101

f27 8.89× 101 2.68× 102 8.74× 101 2.65× 102 6.53× 101 2.03× 102 1.01× 102 3.06× 102 6.22× 101 1.96× 102

f28 2.18× 101 6.83× 101 4.36× 100 1.57× 101 4.00× 100 1.52× 101 6.78× 101 2.10× 102 2.37× 100 1.18× 101

f29 9.00× 101 2.71× 102 9.00× 101 2.71× 102 9.00× 101 2.71× 102 9.40× 101 2.83× 102 9.00× 101 2.71× 102
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4.2. Experimental Analysis

Figures 6–9 demonstrate the solution quality and speed of the benchmark functions. Horizontal
axis represents the iteration numbers while corresponding fitness values are aligned along the
vertical axis. They are respectively the convergence curves of the benchmark functions of unimodal,
multimodal, fixed-dimension multimodal and composite multimodal. From Figures 6–9, it is seen
that the proposed algorithms converge quickly and eventually converge to a very low level. They
successfully avoid the trap of local optimum.
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Figure 6. Convergence curves of unimodal benchmark functions.
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Figure 7. Convergence curves of multimodal benchmark functions.

Unimodal functions have only a global optimum and no local optima, so they benchmark
the utilization of algorithms. SGWO performs better than GWO-DE except for f6, and SGWOD
is better than other compared algorithms. In the functions of f1, f2, f4 and f5, SGWO and SGWOD
are almost identical in the convergence curves, but SWGOD performs better than SGWO in f3, f6

and f7. From Figure 6, we find that they have faster searching ability in the function with only a
global optimum.

Multimodal functions have exponential local optima, they test the algorithm whether to avoid
local optima. It is observed from the experimental results that the proposed algorithms perform better
than other algorithms in most multimodal functions. In multimodal functions, the convergence curves
of SGWO and SGWOD are almost identical in f8, f9 and f10. SGWO is superior to SGWOD in f11, while
SGWOD is superior to SGWO in f12 and f13. They perform better than GWO, GWO-DE and SFLA.
They can not only converge quickly, but also avoid local optimum and finally they find the global
optimum, which shows that they effectively exchange global information. While in fixed-dimension
multimodal functions, they perform better than other compared algorithms except that the final
convergence of f14 is not as good as SFLA.
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Figure 8. Convergence curves of fixed-dimension multimodal benchmark functions.
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Figure 9. Convergence curves of composite multimodal benchmark functions.

Composite multimodal functions have extremely complex structures with many randomly located
global optimum and several randomly located deep local optima. In composite functions, although the
compared algorithms are not good in the convergence curves, as seen from Figure 9, their convergence
speed are very fast and they are better than other compared algorithms except for the final convergences
of f24 and f27 are not as good as GWO-DE. It sees that GWO-DE has a large fluctuation, while SWGO
and SGWOD haven’t the problem. Their convergence curves are relatively smooth, which means that
they do better than the previous generation for each iteration.

From the Table 6 and Figures 6–9, we conclude that the proposed algorithms have improved
the ability of global search and quickly converge in the iteration process. Therefore, they have better
performances in terms of convergence speed and accuracy.

5. Combined Prediction Model Based on Hybrid Algorithms and Its Application

In the section, we apply the algorithms used in the Section 4 to implement the prediction of daily
power load by the neural network. The prediction plays an important part in the planning, scheduling
and security of power systems and it is a useful tool for thermal power planning, hydro-thermal
coordination, and unit economic combination of the systems. The methods of traditional statistical
analysis include regression analysis, state space and so on. However, since the changing process of
power load is a procedure that contains various complex factors, it is difficult to establish an effective
mathematical model by traditional methods, which leads to the low prediction accuracy.

5.1. The Structure of Neural Network Prediction Model

Time series analysis is an important method of mathematical statistics, which gets useful
knowledge from the sequential information. It is essentially to find out the relationship between
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the data before and after, and build the association model. Then it predicts the future through the
historical data and the established model.

The neural network is a method that uses the sum of squared errors as the fitness function and
finds the optimum by gradient method. But it has some inherent defects, such as slow learning speed,
low precision, and easy falling into local minima. The meta-heuristic algorithm is a global optimization
process. It has been widely used in training the parameters of the neural network because it can
find global solutions in the multi-dimensional search space. The parameters of the neural network
are optimized by the meta-heuristic, then the neural network is used to further accurately optimize
the acquired network parameters. So we use the proposed methods to train the network and finish
the prediction.

We adopt the three-layer network structure, which contains multiple inputs and one output
for predicting daily load. The structure of neural network is shown in Figure 10. Since the neural
network uses a three-layer architecture, the selected hyper parameters are input/output weights,
and input/output biases. So if the network has 4 neurons, it has 4n input weights, 4 input biases,
4 output weights and 1 output bias. Where n is the number of input vector. The parameters are
obtained by SGWO and SGWOD, then the network uses the parameters to predict the data and
informs the meta-heuristics about the results of the prediction to guide their evolution.

.

.

.

Input Layer(n) Output Layer(1)Neurons Layer(4)

Figure 10. The three-layer neural network structure.

5.2. Processing of Input Data

In order to accurately predict the daily load, it should take into account various factors affecting
daily load forecasting and select appropriate features. Therefore, the prediction model includes some
relevant factors, such as date classification and daily average temperature. When the weather changes,
it has a great impact on the power load. For example, in the summer, air conditioning and other
related equipment are used more often than in the spring and autumn due to high temperature and the
demand for heatstroke prevention and cooling. In such a situation, it inevitably leads to an increase in
the power load. On the rest days, large users such as factories and schools use less electricity, while
shopping malls and households use more electricity. But working days are the opposite, especially
for major festivals, most enterprises are in a state of holiday. They have very little load, while only
domestic electricity and some tertiary industries use electricity, and their electricity consumption
is relatively low. We use the data from January 1st to December 30th of a city in China, including
daily power load data, weather data and date types, to predict its daily load from January 2nd to
December 31st. Because the data has different values and great differences, it is necessary to quantify
and normalize the input data to avoid distortion of the model. At the input layer, the daily load is
converted to the value of [–1, 1] by the following equation.

x′ =
x− (xmax + xmin)/2
(xmax + xmin)/2

(26)
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where x is the current value; x′ is the converted result; xmax and xmin respectively represents the
maximum and minimum values of the daily load. In order to improve the accuracy of daily load
forecasting, the fitness is redefined as follows:

f = (
n

∑
i=1
|y− ŷ|)/n (27)

where n is the number of prediction data; y indicates the actual result and ŷ presents its
corresponding prediction.

When the temperature is within a certain range, it is a small influence on the electric load,
but when the temperature rises or falls to a degree, it is a large impact on the load. Therefore, it is
necessary to segment and quantify the temperature, as shown in Table 7. There are also three categories
of date types, which are weekdays (Monday–Friday), rest days (Saturday–Sunday), and holidays. 0.4,
0.7 and 1 are the values corresponding to weekdays, rest days and holidays, respectively.

Table 7. Quantitative value of temperature.

Temperature (◦C) Quantitative Value
of Temperature Temperature (◦C) Quantitative Value

of Temperature

<−15 −1 15∼20 −0.1
−15∼−5 −0.8 20∼25 0
−5∼0 −0.6 25∼30 0.3
0∼5 −0.5 30∼35 0.6
5∼10 −0.4 35∼40 0.9

10∼15 −0.2 >40 1

5.3. Prediction Results

The prediction results of the algorithms are shown in Table 8, where LS is the classical least
squared; NN is the fixed structure neural network. According to the statistics of the prediction results,
as shown in Figure 11, the 124th day is the largest prediction error of SGWO and SGWOD. From the
quantified data on the 124th and 125th days, it is seen that the power load has changed drastically in
the two days, and they are large influenced by other external influence factors. It also shows from
another side that power load is closely related to temperature and date types. The efficiency of network
can be further improved by adapting the optimization methods [58–62].

Table 8. The prediction results.

Method Prediction Accuracy (%) Squared Error

GWO 87.01 0.1256
GWO-DE 87.64 0.1276

SFLA 86.73 0.1182
SGWO 89.08 0.1317

SGWOD 89.3 0.1236
LS 69.01 0.4613

NN 86.37 0.1167
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Figure 11. The prediction error of the algorithms.

6. Conclusions

In the study, we improve the model of GWO. Then based on the model, SGWO uses the learning
strategies from GWO and SFLA. SGWOD is an advanced SGWO based on DE. We test the algorithms
through 29 classical benchmark functions. The experiments show that SGWO and SGWOD have better
performances in the exploration and exploitation, but it requires much more processing time because
of every meme group needing to run iteratively. Therefore, the future work is to further improve the
efficiency of the optimization algorithm.

In the end, the algorithms are used to train the parameters in the neural network for predicting
daily power load. Then they find the appropriate network structure and derive the initial parameters
of it and prediction is carried out based on the acquired network and parameters. They overcome the
blindness of the selection of neural network and get excellent parameters, and finally they achieve the
purpose of improving the convergence performance of the network.
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