A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR
Abstract
:1. Introduction
2. Related Works
- (A)
- Non-feature description
- (B)
- Feature description
- (C)
- Deep learning
- (D)
- Other methods
3. Methodology
- (A)
- Preprocessing: the raw point cloud is processed to remove some interference objects, such as ceiling and ground. Then, the point cloud is corrected in the Z direction according to the point cloud distribution. Finally, the point cloud is orthographically projected on the XOY plane;
- (B)
- Simplified Structure extraction: the scene structures are classified according to their structure salience. In addition, we adopt different extraction methods in different types of Simplified Structure;
- (C)
- Loop evaluation: a pre-match is performed to remove the candidate scans whose structure number varies greatly. Then, we utilize a loop evaluation module to analyze the matching state of the scans to detect loop closure.
3.1. Simplified Structure
3.2. Preprocessing
3.2.1. Pass-through Filtering
3.2.2. Z-Axis Correction
3.2.3. Orthographic Projection
3.3. Hierarchical Extraction of Scene Simplified Structure
3.3.1. First-Level Structure
- (1)
- Line segmentation
- (2)
- Euclidean Clustering
- (3)
- Line fitting
, |
3.3.2. Second-Level Structure (Parallel, Vertical)
3.3.3. Second-Level Structure (Arc segment)
- (1)
- Euclidean Clustering
- (2)
- Arc segment Fitting
3.4. Loop Closure Detection
3.4.1. Pre-Match
3.4.2. Structure Hierarchical Matching
3.4.3. Loop Evaluation
4. Experiment
4.1. Experimental Platform and Data Description
4.2. Parameter Setting
4.3. Experiment Results of Structure Extraction and Matching
4.3.1. Dataset 1
4.3.2. Dataset 2
4.3.3. Dataset 3
5. Discussion
5.1. Similarity Matrix
5.2. Error Metrics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michael, M. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2003; pp. 593–598. [Google Scholar]
- Kim, C.; Sakthivel, R.; Chung, W.K. Unscented FastSLAM: A Robust Algorithm for the Simultaneous Localization and Mapping Problem. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 2439–2445. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Lee, B. An Efficient Rescue System with Online Multi-Agent SLAM Framework. Sensors 2020, 20, 235. [Google Scholar] [CrossRef] [Green Version]
- Palomeras, N.; Carreras, M.; Andrade-Cetto, J. Active SLAM for Autonomous Underwater Exploration. Remote Sens. 2019, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
- Bogoslavskyi, I.; Stachniss, C. Efficient Online Segmentation for Sparse 3D Laser Scans. PFG 2017, 85, 41–52. [Google Scholar] [CrossRef]
- Engel, J.; Schops, T.; Cremers, D. Lsd-slam: Large-scale direct monocular slam. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September; Springer: Berlin, Germany, 2014; pp. 834–849. [Google Scholar] [CrossRef] [Green Version]
- Corso, N.; Zakhor, A. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System. Remote Sens. 2013, 5, 6611–6646. [Google Scholar] [CrossRef] [Green Version]
- Shamseldin, T.; Manerikar, A.; Elbahnasawy, M.; Habib, A. SLAM-based Pseudo-GNSS/INS Localization System for Indoor LiDAR Mobile Mapping Systems. In Proceedings of the IEEE/ION PLANS 2018, Monterey, CA, USA, 23–26 April 2018; pp. 197–208. [Google Scholar] [CrossRef]
- Ghani, M.F.A.; Sahari, K.S.M.; Kiong, L.C. Improvement of the 2D SLAM system using Kinect sensor for indoor mapping. In Proceedings of the International Symposium on Soft Computing & Intelligent Systems, Kitakyushu, Japan, 3–6 December 2014; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Chang, H.J.; Lee, C.S.G.; Lu, Y.; Hu, Y.C. P-SLAM: Simultaneous Localization and Mapping with Environmental-Structure Prediction. IEEE Trans. Robot. 2007, 23, 281–293. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, Z.; Li, N. A Graph-Based Hierarchical SLAM Framework for Large-Scale Mapping. In Proceedings of the 5th International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019; Springer: Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Wang, H. SD-VIS: A Fast and Accurate Semi-Direct Monocular Visual-Inertial Simultaneous Localization and Mapping (SLAM). Sensors 2020, 20, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, P.; Iqbal, A.; Russell, B.; Hazrati, M.K.; Kashyap, V.; Akhbari, F. PCE-SLAM: A real-time simultaneous localization and mapping using LiDAR data. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1752–1757. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Fritsch, D. Generation of visually aesthetic and detailed 3D models of historical cities by using laser scanning and digital photogrammetry. Digit. Appl. Archaeol. Cult. Herit. 2017. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Y.; Xu, T. SLAM of Robot based on the Fusion of Vision and LIDAR. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 121–126. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Zhao, T. Mobile Robot for SLAM Research Based on Lidar and Binocular Vision Fusion. Chin. J. Sens. Actuators 2018, 31, 394–399. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, K.; Zhang, W.; Huang, C.; Wu, X. Visual and LiDAR-based for the mobile 3D mapping. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 1522–1527. [Google Scholar] [CrossRef]
- Shao, W.; Vijayarangan, S.; Li, C.; Kantor, G. Stereo Visual Inertial LiDAR Simultaneous Localization and Mapping. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 370–377. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Shao, Y.; So, M.; Sable, C.; Shlayan, N.; Luchtenburg, D.N. A Multisensor Data Fusion Approach for Simultaneous Localization and Mapping. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1317–1322. [Google Scholar] [CrossRef]
- Cummins, M.; Newman, P. Probabilistic Appearance Based Navigation and Loop Closing. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 2042–2048. [Google Scholar] [CrossRef] [Green Version]
- Koch, O.; Walter, M.R.; Huang, A.S.; Teller, S. Ground robot navigation using uncalibrated cameras. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 2423–2430. [Google Scholar] [CrossRef]
- Cummins, M.; Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. Int. J. Robot. Res. 2008, 27, 647–665. [Google Scholar] [CrossRef]
- Angeli, A.; Doncieux, S.; Meyer, J.; Filliat, D. Real-time visual loop-closure detection. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1842–1847. [Google Scholar] [CrossRef] [Green Version]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- James, S.; Waslander, A.V. Multi-Channel Generalized-ICP: A robust framework for multi-channel scan registration. Robot. Auton. Syst. 2017, 87, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Huang, M.; Cao, J.; Zhang, X. Loop closure detection in SLAM by combining visual CNN features and submaps. In Proceedings of the 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; pp. 426–430. [Google Scholar] [CrossRef]
- Su, Z.; Zhou, X.; Cheng, T.; Zhang, H.; Xu, B.; Chen, W. Global localization of a mobile robot using lidar and visual features. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 2377–2383. [Google Scholar] [CrossRef]
- Tazaki, Y.; Miyauchi, Y.; Yokokohji, Y. Loop detection of outdoor environment using proximity points of 3D pointcloud. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017; pp. 411–416. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Bi, L. Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment. Sensors 2019, 19, 2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallasi, F.; Rizzini, D.L. Efficient loop closure based on FALKO lidar features for online robot localization and mapping. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 1206–1213. [Google Scholar] [CrossRef]
- Steder, B.; Grisetti, G.; Burgard, W. Robust place recognition for 3D range data based on point features. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 1400–1405. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure detection. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 231–237. [Google Scholar] [CrossRef]
- Röhling, T.; Mack, J.; Schulz, D. A fast histogram-based similarity measure for detecting loop closures in 3- D LIDAR data. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 736–741. [Google Scholar] [CrossRef]
- Magnusson, M.; Andreasson, H.; Nuchter, A.; Lilienthal, A.J. Appearance-based loop detection from 3D laser data using the normal distributions transform. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 23–28. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, H.; You, S.; Wang, L.; Tang, C. Efficient Laser-Based 3D SLAM for Coal Mine Rescue Robots. IEEE Access 2019, 7, 14124–14138. [Google Scholar] [CrossRef]
- Muhammad, N.; Lacroix, S. Loop closure detection using small-sized signatures from 3D LIDAR data. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 333–338. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Avariento, J.P.; Lerma, J.L. Airborne light detection and ranging (LiDAR) point density analysis. Sci. Res. Essays 2012, 7, 3010–3019. [Google Scholar] [CrossRef]
- Grant, W.S.; Voorhies, R.C.; Itti, L. Finding planes in LiDAR point clouds for real-time registration. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4347–4354. [Google Scholar] [CrossRef] [Green Version]
- Hämmerle, M.; Höfle, B. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture. Sensors 2014, 14, 24212–24230. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, S.; Gang, C.; James, M.; Ross, M. Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS J. Photogramm. Remote Sens. 2015, 101, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Tomljenovic, I.; Rousell, A. Influence of point cloud density on the results of automated Object-Based building extraction from ALS data. In Proceedings of the AGILE 2014 International Conference on Geographic Information Science, Castellon, Spain, 3–16 January 2014; Available online: https://agile-online.org/conference_paper/cds/agile_2014/agile2014_130.pdf (accessed on 16 April 2020).
- Mondino, E.B.; Fissore, V.; Falkowski, M.J.; Palik, B. How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study. Intern. J. Remote Sens. 2020, 41, 4551–4569. [Google Scholar] [CrossRef]
- Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.; Siegwart, R.; Cadena, C. SegMatch: Segment based place recognition in 3D point clouds. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5266–5272. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Zuo, L.; Zhang, C.; Liu, Y. LLOAM: LiDAR Odometry and Mapping with Loop-closure Detection Based Correction. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 2475–2480. [Google Scholar] [CrossRef]
- Yin, P.; He, Y.; Xu, L.; Peng, Y.; Han, J.; Xu, W. Synchronous Adversarial Feature Learning for LiDAR based Loop Closure Detection. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 234–239. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Ding, X.; Tang, L.; Wang, Y.; Xiong, R. Efficient 3D LIDAR based loop closing using deep neural network. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 481–486. [Google Scholar] [CrossRef]
- Ren, R.; Fu, H.; Wu, M. Large-Scale Outdoor SLAM Based on 2D Lidar. Electronics 2019, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E. Loop Closure Detection in Closed Environments. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Li, X.; Sun, M.; Liu, Z.; Zhao, F. Active loop closing based on laser data in indoor environment. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 31 July–4 August 2016; pp. 807–812. [Google Scholar] [CrossRef]
- Tsujibayashi, T.; Inoue, K.; Yoshioka, M. Normal Estimation of Surface in PointCloud Data for 3D Parts Segmentation. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 8–9 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, R.; Pang, M.; Liu, C.; Zhang, Y. Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments. Sensors 2019, 19, 1248. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Smith, T.F.; Waterman, M.S. Identification of Common Subsequences. J. Mol. Biol. 1981, 147, 195–197. [Google Scholar] [CrossRef]
- Kuhn, H.W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
Module | Parameters | Value |
---|---|---|
Preprocess | Maximum height | −0.2 m |
Minimum height | 2.5 m | |
Simplified Structure extraction | Minimum point number of segmented line | 300 |
Maximum cycle number | 50 | |
Minimum point number of units | 50 | |
Minimum unit length | 1 m | |
Minimum arc cluster points | 50 | |
Maximum Arc radius | 3 m | |
Maximum line segmentation error | 0.1 m | |
Maximum Arc segment fitting error | 0.1 m | |
Maximum line fitting error | 0.03 m | |
Loop evaluation | Maximum Geometric similarity length error | 0.2 m |
Maximum topology error | 0.2 m | |
Maximum cumulative matching error | 0.2 m | |
Structure similar score | 60% | |
Maximum distance of Loop | 10 m |
Simplified Structure | Matching Number | Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Scan Number | A | V | P | S | A | V | P | S | Structure Extraction/s | Structure Matching/s |
1 | 978 | 3 | 4 | 8 | 14 | 2 | 4 | 7 | −0.01 | 0.901875 | 0.046108 |
3618 | 2 | 4 | 10 | 15 | 66.7% | 100% | 70% | - | 0.638146 | ||
2 | 419 | 4 | 2 | 0 | 7 | 4 | −0.01 | −0.01 | 7 | 0.684369 | 0.04199 |
13 | 5 | 1 | 0 | 7 | 80% | - | - | 100% | 0.49625 | ||
3 | 10,150 | -- | 5 | 3 | 13 | -0.01 | 4 | 3 | 12 | 1.23388 | 0.023985 |
490 | -- | 4 | 4 | 15 | - | 80% | 75% | 80% | 0.985223 |
Dataset | Error Metric Average | |||
---|---|---|---|---|
Precision (PPV) | Recall (TPR) | Negative Predictive Value (NPV) | Accuracy (ACC) | |
Dataset 1 | 0.9050 | 0.3405 | 0.9706 | 0.9692 |
Dataset 2 | 0.9002 | 0.5177 | 0.9762 | 0.9748 |
Dataset 3 | 0.8761 | 0.1774 | 0.9702 | 0.9690 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Q.; Shi, P.; Xu, K.; Gui, P.; Zhang, S. A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR. Sensors 2020, 20, 2299. https://doi.org/10.3390/s20082299
Ye Q, Shi P, Xu K, Gui P, Zhang S. A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR. Sensors. 2020; 20(8):2299. https://doi.org/10.3390/s20082299
Chicago/Turabian StyleYe, Qin, Pengcheng Shi, Kunyuan Xu, Popo Gui, and Shaoming Zhang. 2020. "A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR" Sensors 20, no. 8: 2299. https://doi.org/10.3390/s20082299
APA StyleYe, Q., Shi, P., Xu, K., Gui, P., & Zhang, S. (2020). A Novel Loop Closure Detection Approach Using Simplified Structure for Low-Cost LiDAR. Sensors, 20(8), 2299. https://doi.org/10.3390/s20082299