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Abstract: Reducing the cumulative error is a crucial task in simultaneous localization and mapping
(SLAM). Usually, Loop Closure Detection (LCD) is exploited to accomplish this work for SLAM
and robot navigation. With a fast and accurate loop detection, it can significantly improve global
localization stability and reduce mapping errors. However, the LCD task based on point cloud still
has some problems, such as over-reliance on high-resolution sensors, and poor detection efficiency
and accuracy. Therefore, in this paper, we propose a novel and fast global LCD method using a
low-cost 16 beam Lidar based on “Simplified Structure”. Firstly, we extract the “Simplified Structure”
from the indoor point cloud, classify them into two levels, and manage the “Simplified Structure”
hierarchically according to its structure salience. The “Simplified Structure” has simple feature
geometry and can be exploited to capture the indoor stable structures. Secondly, we analyze the
point cloud registration suitability with a pre-match, and present a hierarchical matching strategy
with multiple geometric constraints in Euclidean Space to match two scans. Finally, we construct a
multi-state loop evaluation model for a multi-level structure to determine whether the two candidate
scans are a loop. In fact, our method also provides a transformation for point cloud registration
with “Simplified Structure” when a loop is detected successfully. Experiments are carried out on
three types of indoor environment. A 16 beam Lidar is used to collect data. The experimental results
demonstrate that our method can detect global loop closures efficiently and accurately. The average
global LCD precision, accuracy and negative are approximately 0.90, 0.96, and 0.97, respectively.

Keywords: simplified structure; point cloud registration suitability; hierarchical structure matching;
loop closure detection; indoor scene

1. Introduction

Simultaneous Localization and Mapping (SLAM) with low-cost Light Detection and Ranging
(Lidar) plays an important role in autonomous driving, artificial intelligence and virtual reality.
With the development of robot technology, SLAM has attracted more and more attention and made
some achievements [1-4]. For SLAM technology, various systems or platforms have been introduced,
such as the Lidar system [5], stereo camera [6] and RGBD-camera [7]. Some technologies based on
SLAM can contribute to the improvement of mapping accuracy, such as a Pseudo-GNSS/INS module
integrated framework with probabilistic SLAM [8], a 2D SLAM system using low-cost Kinect Sensor [9],
prediction-based SLAM (P-SLAM) [10], graph-based hierarchical SLAM framework [11], semi-direct
visual-inertial SLAM framework [12], and a CPU-only pipeline for SLAM [13]. Similar to traditional
data fusion technology [14], SLAM with data fusion technologies has also been developed accordingly,
such as a fusion of the RGB image and Lidar point cloud [15-17]. A stereo visual inertial Lidar (VIL)
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SLAM incorporates tightly coupled stereo visual inertial odometry (VIO) with Lidar mapping and
Lidar-enhanced visual loop closure [18]. Visual stereo image and 2D light detection and ranging (Lidar)
data are incorporated into SLAM [19].

However, improving the robustness of SLAM is still a difficult task, especially in large indoor
spaces, so the Pseudo-GINSS/INS module may not work well indoors. In fact, robot pose estimation
is an iterative solution process using past scans. Without other auxiliary equipment, measurement
errors will inevitably accumulate. LCD judges whether the robot returns to the place it has already
passed. It is crucial to reduce the accumulated errors from odometry for long-running robots. After
LCD, we can establish data association with past scans, then update the map. Here, we consider LCD
as a matching task; loop closure may occur only if the scene structures are similar.

To date, there has been some research on LCD, which are generally divided into two categories
according to data type: (1) LCD based on image data—visual sensor, formatted image with color
information, which uses 2D features in images to express a 3D scene and then matches images based
on the feature. However, the method is subject to illumination change. A well-known method is bag of
words (BOW) [20], and LCD based on image data is performed [21-23]; (2) LCD based on point cloud
data—laser sensor, discrete 3D points with accurate distance. Usually, registration work is done here,
such as ICP [24] and GICP [25], then loops are detected with the registration results. Some other LCD
methods combining images and point cloud are proposed, and visual CNN features are combined
with submaps [26]. A key frame-based localization module is integrated into a particle filter-based
position-tracking algorithm [27]. Compared with the first category, the second type of method is not
subject to illumination change and has a distinct spatial topology, and viewpoint change is the only
key factor. Its weakness is the massive data memory, and information loss for some specific structures.

In this paper, we propose an indoor global LCD method with a low-cost 16 beam Lidar. Firstly,
we extract “simplified structure” in point cloud. Here, the “Simplified Structure” has simple geometry
and are robust to describe the structured scene. It is superior to traditional feature description in
extraction efficiency and robustness, even for low-cost Liar data. Then, we carry out a hierarchical
matching based on “Simplified Structure” with multiple geometric constraints in Euclidean Space.
Finally, global candidate loops are detected using a multi-state loop evaluation model of multi-level
structure. Our main contributions are three-fold: (1) the “Simplified Structure” designed to capture
robust structure in indoor point cloud has compact geometry and high extraction efficiency, and it
offers a novel feature extraction for structured indoor scene; (2) The quantitative statistics of “Simplified
Structure” can be exploited as a pre-judgment indicator for point cloud registering suitability, that is,
to judge whether the point cloud can be registered or not. With the statistics, many non-loop scans
are discarded, which significantly improves the efficiency and accuracy of global LCD; (3) our LCD
method is valid and robust for the low-cost Lidar (16 lines) in an indoor environment. It overcomes the
over-dependence on expensive high-resolution Lidar in previous methods.

The rest of the paper is organized as follows: Section 2 reviews related work. Section 3 introduces
our global LCD method. Section 4 shows the experiment details. Section 5 discusses and analyzes our
experiment. Finally, Section 6 concludes our work.

2. Related Works
Some LCD researches based on point cloud are generally divided into four categories:
(A) Non-feature description

LCD is merely performed with part of the original point cloud and no feature description is
computed in this category. The closest points to Lidar in the point cloud are matched with improved
Smith Waterman [28]. Point clouds without feature description are registered with ICP [29] and
GICP [30] for LCD, and then registration results serve as major indicators for loops;
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(B) Feature description

This category is classified into two parts according to the way of feature description. One is feature
descriptor, the other is feature histogram. (1) Feature descriptor: descriptors, as the distinctive label
for the point cloud, are used to match for LCD, and then a loop is detected when two descriptors are
matched well. The major difference in each method lies in the descriptors and the matching approach
for the descriptors. Researchers propose an improved FALKO interest point and GLAROT descriptor,
then they analyze three feature association algorithms methods: Random Sample Consensus (Ransac),
Correspondence Graph, and Hough Data Association [31]. On the point cloud range image, a local
distance map describing the neighborhood structure is used as a descriptor for LOG interest points [32].
Researchers project a 3D point cloud to multiple 2D planes and generate a density signature for
points for each of the planes, then use the left and right singular vectors of these signatures as the
descriptor [33]. (2) Feature histogram: most histograms originate from some statistical attributes
on point cloud, and the loops are detected based on the histogram similarity. Many researchers
have proposed various histograms under different applications. A projection function assigns an
additional attribute value for points, and then a normalized histogram generated from the point
density in each projection function value interval [34]. Space is divided into many cells that are labeled
with line, plane, sphere, etc. Point number in each cell category constitutes the histogram, then the
multi-scale one is formed at a different distance [35]. Researchers construct the histograms similarly
to [35] and determine the candidate loop scan based on the Normal Distributions Transform (NDT)
registration [36]. A histogram that discretizes the dot products of normal and vertical direction into
101 bins for every point and counts quantity in each interval is designed [37]. Generally, the state
of histograms is related to the density of point cloud to some extent. Some research about the data
distribution characteristics of Lidar under different densities are published [38-43];

(C) Deep learning

The random forest classifier determines whether the matched point cloud represents the whole
or part of the same object with a predefined feature space [44,45]. Synchronous adversarial feature
learning with a dual Bi-GAN that associates the 2D Bi-GAN with 3D Bi-GAN is proposed, and it
can learn abstract attributes from different dimensions without any label data [46]. A semi-manual
representation learning method based on a Siamese convolution neural network is proposed, and it
manages LCD as a similarity modeling problem [47]. With multiple point cloud features, AdaBoost is
used to detect candidate loop scans, which are further screened in back-end optimization [48];

(D) Other methods

The pose map is constructed with the odometry data, and then neighborhood path geometry is
matched to determine loops [49]. Using rasterized map matching, LCD is carried out between raster
maps using branch-and-bound [50]. The indoor corridor is divided into four states and the longest
common subsequence matching and hu-moment-based contour match are adopted [49]. Researchers
detect loop closures based on a grid map representation of the environment, and the map is created via
Rao-Blackwellized particle filtering [51].

However, some issues for LCD still exist in an indoor environment: (1) LCD based on a visual
scheme is seriously affected by illumination change; (2) LCD with multi-beam Lidar (64) suffers from
mass data memory and calculation, and since the information of a low-cost 16 beam Lidar is less
than that of multi-beam Lidar, the previous LCD methods are inapplicable, and little LCD research is
performed on 16 beam Lidar; (3) pre-analyzing the registering suitability of point cloud scans plays an
important role for global LCD, so discarding those scans with low registering suitability will improve
the efficiency and accuracy of LCD, however, there is not much research on registering the suitability
of a point cloud.

Our method is applicable to 16 beam Lidar and not affected by illumination change. It overcomes
the dependence on high-resolution point cloud sensors. This makes it possible for SLAM to generate
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desirable results with those low-cost sensors. The method can capture an indoor robust structure with
less computation complexity. Through quantitative analysis of the structure in the scene, we obtain the
statistics of the extracted “Simplified Structure” and can remove a large number of non-loop scans in
global LCD. It is extremely applicable to some structured indoor scenes that have a robust structure,
such as walls or cylinder pillars. In the process of LCD, our method can determine the loop through
the scan-to-scan match, and there is no need to exploit other additional point cloud maps.

3. Methodology

Our LCD main flowchart is shown in Figure 1. There are three main stages:

(A) Preprocessing: the raw point cloud is processed to remove some interference objects, such as
ceiling and ground. Then, the point cloud is corrected in the Z direction according to the point
cloud distribution. Finally, the point cloud is orthographically projected on the XOY plane;

(B) Simplified Structure extraction: the scene structures are classified according to their
structure salience. In addition, we adopt different extraction methods in different types of
Simplified Structure;

(C) Loop evaluation: a pre-match is performed to remove the candidate scans whose structure
number varies greatly. Then, we utilize a loop evaluation module to analyze the matching state
of the scans to detect loop closure.

[ » coment "

segment

A B C :

Lo Preprocess Simplified | | Parallel | Structure Loop

proces Structure matching evaluation |

Vertcl ;
. Arc segment

Figure 1. Flow chart. P is the current point cloud scan input. Q1Q>...Q; are all candidate point cloud
scans saved locally. A B and C are three main stages-Preprocessing, Simplified Structure extraction and
Loop evaluation respectively.

3.1. Simplified Structure

There are two difficulties in point cloud feature extraction: (1) large computation; (2) unrobust
feature extraction. Some researchers exploit normals to capture plane structure in data [52,53], which is
not enough for indoor environment because it lacks a quantitative description for structural distribution.
To overcome this shortcoming, we propose a “Simplified Structure” to capture the stable structure
in point cloud and exploit some salient attributes to describe the “Simplified Structure” distribution,
such as the length of the wall and the radius of the cylinder. We obtained some new structure attributes
when the structure became complicated, for example, the distance between two walls is also a robust
description for the corridor beside the length of the walls. Some specific structural attributes are
discussed below.

We classified “Simplified Structure” into two levels. The first level, Single Line Segment (expressed
as Single Line in the following), is also a basic unit for some other structures. On the second level
is the line segment pairs composed of two single lines, such as parallel and vertical, and the Arc
segment. Figure 2 shows the simplified results for a common structure in an indoor scene. It has to be
mentioned that some glass structures may exist in some indoor scenes, which may impair the data
accuracy. However, the proposed “Simplified Structure” can capture a robust wall structure which
is subjected little to the glass. If a large glass structure and insufficient “Simplified Structure” exist,
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these point cloud scans will not be qualified to become a candidate loop scan in LCD, because we pay
more attention to accuracy than recall. However, if the glass structure dominates in the scene, the

performance of our LCD may be limited.

T | IHII_II
T

(0)

Figure 2. Simplified structure in indoor environment. (a) the rgb images of real scene; (b) stable
structure; (c) Simplified Structure result. Column 1: Single line; Column 2: Arc segment; Column 3:

Parallel; Column 4: Vertical.

In Figure 3, the “Simplified Structure” is further classified according to the geometric and positional
relationship of a structure unit. (a) shows the 1st level, and (b)-(h) the 2nd level.

777777777777777

(a) (b)
(0 (C'l) (e)
) ® Ty

Figure 3. Categories of Simplified Structure. (a) Single line. (b) Arc segment; (c) Complete overlap
parallel; (d) Partial overlap parallel; (e) Non-overlap Parallel; (f) Complete real vertical; (g) Partial real

vertical; (h) Virtual vertical.

(1) Single Line (Figure 3a): The simplest structural attributes—two vertices, line length, line
parameters. This refers to the wall structure; vertices and length are its range distribution description,
and line parameters for its direction description;

(2) Arc Segment (Figure 3b): This stands for the cylindrical structure’s attributes—the arc center,
radius, chord length, and geometric points of the arc, as well as a midpoint on the arc and the two
endpoints farthest from Lidar on both side of the midpoint;
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(3) Parallel (Figure 3c—e): Approximate parallel line pairs are classified into three types—complete
overlap, partial overlap and non-overlap—according to the overlap relationship of two lines.
Attributes—two single lines (first-level structure), two line overlap ratios, and overlap type;

(4) Vertical (Figure 3f-h): Approximate vertical line pairs are also classified into three
types—complete real vertical, partial real vertical and virtual vertical—according to the position of
perpendicular foot and two lines. Attributes—two single lines, a perpendicular foot and vertical type.

3.2. Preprocessing

The preprocessing prepares for LCD, including pass-through filtering, Z-axis correction and
orthographic projection. After the preprocessing, the projection point cloud on XOY plane is obtained.
The operating environment of Lidar can be considered approximately horizontal.

3.2.1. Pass-through Filtering

Pass-through filtering filter out points by two height thresholds, then we get P,_ijter (Nz_ fl'lter) in
Formula (1). N fijtr is the number of points in point cloud P, _fjjer; similar expression is used below.
Ground and ceiling points are preliminarily removed here.

P, _itter = {P | Hpin < Pz <Hpax, p € Pz—correct} 1)
where H,,;;, and H;,x are two height threshold sets based on the height of the experiment platform.

3.2.2. Z-Axis Correction

Although the operating environment of Lidar is approximately horizontal, some deviations still
exist. Z-axis correction is used to eliminate the deviation. Covariance matrix (COV) is constructed in
Formulas (2) and (3). Then, two principal directions of the point cloud are obtained through Singular
Value Decomposition (SVD) on COV. They are aligned with the horizontal plane to obtain the corrected
point cloud P,_correct

1 .
e = N oy P i
- i=1,2 ... szfilrer
B ; center \T i center
COV = Z (pz—filter - Pz—filter) * (Pz—filter - Pz—fi’t‘f") ©®
i=1,2 ... No—filter
where P;_ Filter is the point cloud after pass-through filtering; N,_ iy, is the point number of P;—filff’;
ter i in P!
peer f‘l?ﬁgr is the point cloud center in P’ _ Filter

3.2.3. Orthographic Projection

Using Formula (4), P,—correct is orthographically projected onto the XOY plane. Then, we obtain
the projected point cloud Ppyjec (Figure 4b)

PP“’F‘“ = {p } px=4qx, py=4qYy, pz= 0, qe Pz—correct} (4)

where p and g represent points in Pproject and Pz—correct, respectively.
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() (b)

Figure 4. Preprocess result (a) original point cloud (b) preprocessing result. The scan is sampled from
dataset 1 (Section 4).

3.3. Hierarchical Extraction of Scene Simplified Structure

3.3.1. First-Level Structure

Figure 5 is the flowchart of the first-level structure extraction. We propose a cycle segmentation
strategy with two modules—A: cycle self-checking; B: quantitative analysis and reconstruction of units.
In each segmentation, the largest point cloud subset that satisfies the same line distribution is extracted
in the current remaining point cloud. The cycle self-checking module prevents the whole process
from falling into an indefinite cycle. The quantitative analysis and reconstruction module ensure the
robustness of a structure through removing trivial structures. The reason we adopted this strategy is
that linear-distributed wall structures are major components in an indoor environment, and piecewise
walls are consistent in the direction based on architectural structure form.

] | I ]
I A I : H :
I I
I ]
\ Point number | | 1 Point number I
! check - constrain X
1 : | [
1 1 | 1
Projection Line Euclidean l Line Single line
point cloud segmentation clustering I fitting segment
I

| I 1

I ! |

(| 1 01 ! [

1 1

X Cycle number : ] Scale constrain I

i check Pl |

I . o I 1 1

I P! |
I

Figure 5. Flow chart of the first-level structure extraction. A is the module—“cycle self-checking”, and
B is the module—"quantitative analysis and reconstruction of units”.

(1) Line segmentation

In Formula (5), Lineyy. is extracted through Ransac [54], and Pj; is updated after each successful
line segmentation. Line parameters are computed. The cycle self-checking module includes two parts:
(a) point number check, where Nj;(minimum points) is set to judge whether the line extraction is
complete. Most line segment structures in the scene have already been extracted when Liney,, is small
enough; (b) cycle number check: Cit g (maximum cycle number) prevents the process from falling
into an infinite cycle

Piefr = {P ‘ P € Pproject, P ¢ Linepre} ®)

where Py, is the remaining point cloud in Ppy,jec+ after each successful line segmentation; Linepy. , the
largest point cloud subset that meets the same line distribution in P, ¢, and Pj,; is just Pproject in the
first line segmentation;
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(2) Euclidean Clustering

Each Liney, is classified into multiple P;. (i =1, 2 ... K) by Euclidean Clustering.

ine_cluster
The quantitative analysis and reconstruction of unit includes two parts: (a) point number constrain—to
some extent, point numbers indicate its validity, so Ny is set. If the point number of P;ine cluster 15 1688

than N, it means that this P, is meaningless to scene representation, the P, object is a
P line_cluster line_cluster

small scattered structure, or the structure is broken by truncation error. Figure 6 show the truncation
error breaks’ stable structure; (b) Scale constrain—L,, is set to examine the diagonal length of the

minimum bounding rectangle of P},
line_cluster

will be put back into Pjf; for the next line segmentation.

. After quantitative analysis and the reconstruction of the
i

unit, some P,
line_cluster

L2
I A Truncation
1 1
L1 - L __error 1 O
e I
a b c d I
I B I
(a) (b)

Figure 6. Truncation error. (a) Structure before truncation error; (b) Structure after truncation error;
L1 and L2 are two Lineyr, in Section 3.3.1 (1), a b c and d are the Euclidean clustering results of L1
in Section 3.3.1 (1), and A B for the L2. Blue line segment L2-A is blocked by L1 because of the
truncation error.

(3) Line fitting
i
line_cluster

Fitting Algorithm” (Algorithm 1) to improve fitting accuracy. In Algorithm 1, P is P! resolution

line_cluster’
is distance interpolated resolution in line segment, and the output is single line (first-level “Simplified
Structure”). The algorithm performs projection analysis on P;'. , and the result is shown
ine_cluster
in Figure 7.

We obtain line segment vertices in P through Ransac. We proposed a “Boundary Projection

Alogorithm 1 Boundary projection in line fitting

1: Input P = {p; € R" };.5 , resolution

2 : Output Single Line

3: Lineparameter(a, b, c}, Line « Ransac Line fitting(P)

4 idx,y, < 0,idxma < 0

5: if line gradient > 1

6: forP; € Pdo

7: Project; < project P; to Line

8: end for

9 idxpy, < idxof Yy, , idXmex <= idx of Yy, in Project
10 Npoint < (Projectigy, . .x = Projectyy, . .x) / resolution

11: end if

12: else

13: forP; € Pdo

14 : Project; « project P; to Line

15: end for

16 idxy, < idx of X, idXmex < idx of Xyay, in Project
171 Npoint < (Projectigy,, .-y — Projectigy, . .y) / resolution

18 : end else

19 : line_endpointl « Project;sy, . , line_endpoint2 < Projectiz,
20 : Single Line <« interpolate point according to line_endpointl, line_endpoint2, N
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Figure 7. First-level structure—single line.

3.3.2. Second-Level Structure (Parallel, Vertical)

The structure pairs are more stable than the first-level structure in the feature description. Some
single line pairs are exploited as the second-level structure (Parallel, Vertical).
(1) In Formula (6), all possible single line pairs are reserved as

{(Singleline;, Singleline;) |i # j,i, j € Nsingictine (6)

where Ny gleiine is the number of the first-level structure;
(2) In Formula (7), angle classification, two types of structure pairs (Parallel Vertical) are selected
based on the angle between two single lines (Cos). We set Cos;, to 0.866 and Cos, to 0.259.
Pam.llel Cos > Cosyp @)

Vertical Cos < Cos,

where Cos, and Cos; are the cosine value thresholds for Parallel and Vertical, respectively;

(3) Attributes statistics: Parallel—(a) Distance: average distance of two vertices to the other
single line. (b) Overlapping types: we compute the ratio of overlapping length in each single line
length, and classified overlapping types into three types—complete overlapping, partial overlapping
and non-overlapping. If one single line is far away from the other, the pair will be discarded.
(c) The attributes that two single line have. Vertical—(a) perpendicular foot. (b) Vertical types:
three types—point outside the two, point in one but outside the other and point in two according
to the position of the perpendicular foot and two single lines. (c) The attributes that two first-level
structures had.

3.3.3. Second-Level Structure (Arc segment)

In arc segment extraction, we adopted a serial process with several quantitative analysis, as shown
in Figure 8.

Height | : :
i Scale constrain
constrain
Projection | Euclidean Arc segment AT SoTIast
point cloud clustering i fitting i
Point number Geometric
constrain constrain

Figure 8. Flow chart of the second-level structure—arc segment extraction.



Sensors 2020, 20, 2299 10 of 23

(1) Euclidean Clustering

Pproject 1s classified into clusters me_dus ter(i =1,2... Nye—custer) by Euclidean clustering. Then,

we introduced two quantitative analysis constrain: (a) height constrain—some P;rc_dus 1oy Clusters, such
as pedestrian and potted plants, are discarded with height threshold H,st.;. An index correspondence
mechanism is presented here to obtain the z coordinate as Formula (8); (b) Point number constrain—some

trivial clusters are discarded by point numbers threshold N,
{] «— k |index jE Pore—ctusters ke Pz—filter } 8)

where Pyc_cyster 18 @ point cloud cluster after Euclidean clustering; P,_ gy, is the point cloud after
pass-through filtering in Section 3.2.1; j, k are point index in Pyrc—cluster, Pz filter-

(2) Arcsegment Fitting

Ransac is exploited again to fit the arc in each P;rc_dus 1or (@) Scale constrain: some linear clusters
are removed with maximum radius threshold Ry, because line segment is a special arc structure with
a large radius. (b) Geometric constrain: three points (one arc midpoint and two arc endpoints) are
exploited to verify the arc characteristics. In Figure 9, we define a complete arc that should have an arc
midpoint (42) and two arc endpoints (9143). g2 is the closest point to Lidar, and g; and g3 are the two
farthest points on each side of g;; they resemble an isosceles triangle. Incomplete arc segments caused

by occlusion or other reasons will be discarded here.

L
S
® S
Figure 9. Relative Position of Lidar and Cylindrical Structure. S represents the Lidar; 41 and g3 are two

arc endpoints, g, is the arc midpoint.
3.4. Loop Closure Detection

Compared to traditional feature extraction methods, “Simplified Structure” indicates the
distribution characteristics of the surrounding environment in a simpler way. Furthermore, the
number and type of structure is also illustrated. With the number and types of “Simplified Structure”,
we can approximate the position state, which will significantly improve the performance of global LCD.

Inspired by Smith Waterman [55] and Hungarian Algorithm [56], we present a hierarchical
matching strategy with multiple similarity metrics in Euclidean space, and the matching rate of
“Simplified Structure” indicates scene similarity. The similarity metrics include geometric metric,
topological metric, and matching metric. The geometric metric is the attribute similarity measure for
each type of structure. Topological metric is the primary relative position similarity measure between
matching pairs. Matching metric is the precise relative position similarity measure between matching
pairs after transformation. First, candidate-matching pairs satisfying geometric similarity are selected.
Secondly, topological analysis is performed under the same “Simplified Structure”. Finally, the error
equations on transformation parameters are constructed, and the similarity state for the same type of
“Simplified Structure” is evaluated. Some auxiliary feature attributes can be utilized here, for example,
in Figure 10, we calculate a midline to assist matching analysis in the parallel structure.
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¢--——mmm-- o [2

Figure 10. Midline in Parallel. L1 and L2 are a Parallel structure; M is the midline.

3.4.1. Pre-Match

After Section 3.3, we have extracted all “Simplified Structures” in each scan. Then, we roughly
determine the registration suitability of two scans through a quantitative analysis of the Simplified
Structure. Since the “Simplified Structure” can capture the stable scene structure, if the number
of structures differs greatly, then the two scans cannot be registered, and they must not be a loop.
Pre-match quantitative analysis includes two parts: (a) the existence of structure—if a certain type
of structure exists in one scene but not in the other, then they must not be a loop; (b) quantitative
difference in structure—the more the structure quantity differs, the lower the probability of loop
is. Many non-loop scan pairs are discarded here, and much time is saved because time-consuming
structure matching is not performed. As a crucial advantage of our Simplified Structure, we can
eliminate many non-loop scans just by quantitative analysis in this step.

Due to the robustness of the “Simplified Structure”, this Pre-match is extremely suitable to analyze
the point cloud registration suitability. It exploits the quantitative analysis of the structure to determine
the similarity between point cloud scans roughly instead of through traditional overlapping analysis.
It utilizes the intuitive Simplified Structure number to determine whether the registration can be
carried out successfully. This provides an excellent pre-analysis for point cloud registration.

3.4.2. Structure Hierarchical Matching

Firstly, for each type of “Simplified Structure” in two scans, we construct a candidate similarity
matrix (Candidate) according to structure attributes. Its row and col represent a structure index for two
scans (as shown in Figure 11a). Secondly, we find the longest matching queue for each matching pair
(solid triangle in Figure 11a) in Candidate. Thirdly, a matching number matrix (Match) is constructed
(Figure 11b), where m; ; means the maximum matching pair number in Candidate for structure matching
pair Candidate; j. The maximum value of Match is the maximum matching number for this type
of structure.

A O O A O A Moo O O my3 O Mys

O A O A O O o my, 0O my3 O O

O A OO A O o my; O 0O myy, O

A 0O D0 A AT My O O my3 Mmyy O
(@) (b)

Figure 11. Matching analysis matrix. (a) Candidate match matrix (Candidate); (b) Matching number
matrix (Match ). Row and column in two matrixes represent the index of Simplified Structure in source
and target data, respectively. Solid triangle represents a candidate match structure pair, whereas hollow
square represents a non-match structure pair; red dashed line—topological analysis of match pair; blue
solid line a—the two structure pair that cannot exist in the same match queue; blue solid line b, the
two structure pair can exist in the same match queue; m; ;, the maximum match pair number found in
Candidate for Candidate; ;.



Sensors 2020, 20, 2299 12 of 23

Four parts need to be explained in the longest matching queue search process. (1) In the process
for Candidate; j, which is the first pair in the matching queue, and we search all possible pairs in
Candidate. M; ; is the maximum pair number of the queue for Candidate; j (Figure 11b). (2) The structure
pairs in the same row or col cannot exist in one matching queue, for example, the blue solid line a in
Figure 11a, Candidateqn Candidateg 3, cannot exist in the same matching queue because the structure pair
is one-to-one. (3) Topological metric is first considered here, which can ensure that the matching queue
satisfies the relative position relation. Topological metrics include point-to-line distance, point-to-point
distance, and angle between line and line. (4) Error evaluation: in Formulas (9) and (10), point-to-point
distance and point-to-line distance of structure matching pairs are used

A=T(x) +B+T(y) +C

cost funtionl : arcmin 9)
f T Z VAZ ¥ B2
cost function2 : arc;Tnin \/(X —T(x)* + (Y -T(y))* (10)

where A, B, and C are the parameters of line equation; x and y are the coordinates in the source
scan; X and Y are the coordinates in the target scan. T(x) and T(y) are the coordinates of x and y
after transformation. T is the transformation parameter, and it can also be used for the point cloud
registration.

3.4.3. Loop Evaluation

A multi-state loop evaluation model of multi-level structure is constructed in Figure 12. It scores
each type of structure. There are three evaluation states for each type of Simplified Structure: (1)
default state—structure quantity is insufficient (parallel-2, vertical-1, arc segment-2, single line-5); (2)
scoring state—score is computed in Formula (11) to see if both two scans have sufficient structure
and some structure pairs are matched well; (3) error state—a special state, which takes place in two
situations, one where the score is less than Sg;,, in the scoring state for Simplified Structure, the other
where a default state occurs in the first-level structure. If an error state occurs in one type of Simplified
Structure, the two scans will be regarded as non-loop immediately. Before evaluation, the evaluation
states of all Simplified Structures are initialized as default state. As shown in Figure 12, the second-level
structure is evaluated first, and if all of them remain in default state after evaluation, the first-level
structure will be evaluated. The corresponding structure in two scans will be considered as similar
if their score is higher than S, in scoring state; we set S, to 60%. On the contrary, the evaluation
state of two scans are set to error if the score is less than Sg;,;,,. When the error state occurs, the current
candidate scan will be discarded and the next scan matching will start.

score = N X 100% (11)
Ny
where Ny, is the maximum matching number of the simplified structure in two data; N, is the maximum
number of the Simplified Structure in two data.

If two scans are a loop closure, their score should be higher than S, for the Simplified Structure
in scoring state. For global LCD, most scans are non-loop and it will be extremely time-consuming if
we perform structure matching. In our method, massive non-loop scans can be eliminated through
pre-match. The multi-state loop evaluation model improves the accuracy and efficiency of LCD through
the hierarchical management of structure. Our LCD method depends on the Simplified Structure; it
can detect loop scans efficiently through a quantitative analysis of the structure. It is extremely effective
in a scene that has some robust structure.

In our LCD, if two-point cloud scans are identified as loop after loop evaluation, then we can also
acquire the transformation parameters based on the cost function in Formulas (9) and (10), and we
adopt the least-square solution.
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Figure 12. Flow chart of loop evaluation. “Score judge” is to judge whether score is higher than the
score threshold (Ss;y,, ) in scoring state. Default, Scoring and Error are three evaluation states.

4. Experiment

4.1. Experimental Platform and Data Description

Our global LCD experiment was carried out offline; the 16 beam Lidar and platform in the
experiment is shown in Figure 13. Differences between our platform and Pseudo GNSS/INS setup are
three-fold: (1) applicable scene—pseudo GNSS/INS is not suitable for long-time localization in large
indoor scenes (although the accuracy is higher for outdoor). Our experiment setup works well under
bad (or even no) lighting conditions; (2) platform cost—our main experimental platform composes of
a 16 beam Lidar and has no other equipment, and the cost is less than GNSS/INS setup; (3) external
signal—we don’t need any external signals to perform localization, and satellite signal is required in
Pseudo GNSS/INS setup.

Figure 13. 16 beam Lidar in our experiment. A 16 beam Lidar is set on the Turtlebot platform.

In Figure 14, there were three typical indoor scenes in our experiment and their Lidar trajectories
were shown in Figure 15. Dataset 1 was a common indoor corridor scene; dataset 2 was an indoor
hall; dataset 3 was an underground parking lot. We collected 4500 (dataset 1), 547 (dataset 2) and
10,400 (dataset 3) point cloud scans in three datasets, respectively. The trajectory in Dataset 1 was a
round route; the trajectory in dataset 2 and dataset 3 included a back-and-forth route. We obtained the
ground truth of each scan by Laser SLAM and obtained the relative pose to the first scan. A laptop
with Intel Core i7-5500U CPU @2.40 GHz 2.39 GHz and 8.0 GB of RAM was applied in our experiment.
The key scan was sampled to a lower computation. Here, the key scan interval is different in three
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datasets because of the different number of collected data scans. Dataset 1: a key scan every five scans,
dataset 2: every scan is a key one, dataset 3: a key scan for every ten scans. If our method is applied to
online SLAM, constant key scan interval could be exploited.

Figure 14. (a) Dataset 1—corridor; (b) Dataset 2—hall; (c) Dataset 3—underground parking lot.

(b)

Figure 15. Lidar trajectory. (a) Dataset 1, A-B-D-E-A-B-G-B-D-E-A; (b) Dataset 2,
A-B-C-D-E-F-G-H-I-A-I-H-E-D; (c) Dataset 3, A-B-C-D-E-D-C-F-G- A.

4.2. Parameter Setting

The experimental parameters (including some error thresholds) were classified by modules as
Table 1, preprocess parameters, Simplified Structure parameters and loop detection parameters. Some
critical parameters were introduced here: (a) preprocess—some specific parameters such as H,;;;, and
Hux needed to be adjusted according to the installation height of Lidar, and H,,;,, can be set to the
approximate installation height; (b) Simplified Structure—N),; and Njj,, the termination conditions of
the process, were empirically set to 300 and 50, respectively. Parameters here ensured the accuracy
of the Simplified Structure and they were mainly for accuracy. It was verified that these parameters
change little for different indoor environments; (c) loop evaluation—parameters here were mainly for
the similarity measurements of the Simplified Structure. The higher the S;,, was set, the more similar
the two scenes were, and we set Sgj;;;, to 60%.
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Table 1. Overview of parameters in experiment.

15 0f 23

Module Parameters Value
Maximum height Hyx —0.2m
Preprocess Minimum height H,,;,, 25m
Minimum point number of segmented line N, 300
Maximum cycle number Cior gy 50
Minimum point number of units Nj, 50
Minimum unit length Ly, Im
Simplified Structure extraction Minimum arc cluster points N 50
Maximum Arc radius Ry 3m
Maximum line segmentation error L 0.Im
Maximum Arc segment fitting error Ly 0.1m
Maximum line fitting error L, i 0.03 m
Maximum Geometric similarity length error Lgs 0.2m
Maximum topology error Ly, 02m
Loop evaluation Maximum cumulative matching error L, 02m
Structure similar score Sg;,;, 60%
Maximum distance of Loop Ly, 10m

4.3. Experiment Results of Structure Extraction and Matching

Limited by the paper length, only two loop scans were sampled as analysis example in each dataset.
In the experiment, the ground truth mentioned in Section 4.1 was exploited to verify our LCD method
performance. In Table 2, we listed number of Simplified Structure, number of structure matching and
time consumption for the example scans in three dataset. Time consumption of Simplified Structure
extraction and matching was also computed.

Table 2. Quantization Results and Matching Status of Simplified Structure and time cost for
example data.

Simplified Structure Matching Number Time
Dataset Scan Number A \% P S A \Y% P S Ei:::ccttil(l)l:/s 1\2; 1:;:;111;/8
! 3967188 g i 180 1451 66.27% 103% 707% - 8:2(3)51;{122 0.046108
2B s 0w T o owes oo
s W D aa s s e sm o 00

A result of —0.01 means that the Simplified Structure is in default state in loop evaluation because it has an insufficient
structure for matching analysis. A, V, P and S were Arc segment, Vertical, Parallel and single line, respectively.
The structure matching time here only referred to the time consumption of the sampled two scans. The percentage
(XX%) is the score for the structure matching.

4.3.1. Dataset 1

Dataset 1 was a corridor scene; the 978th and 3618th scan were sampled. Figure 16 showed the
original data (a) and Simplified Structure (b—f). For the visual effect of matching results, we aligned
two scans and kept 20 cm in z direction. The two scans are around D in Lidar trajectory (Figure 15a).
All kinds of Simplified Structure were detected here. The structures of the two scans were similar and
matched well on the visible effect (Figure 16b—f). In Table 2, number of Simplified Structure in two
scans were almost same and all matching ratios were higher than 60%, especially the vertical, which
was 100%.
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(b)
(d) (e) ()
Figure 16. Matching results of structure in Dataset 1. (a) The 978th and 3618th scan original point

cloud. (b) All Simplified Structure; (c) Single line; (d) Parallel; (e) Vertical; (f) Arc segment. Green—the
978th scan; Red—the 3618th scan.

4.3.2. Dataset 2

Dataset 2 was a spacious open hall scene, and there were a few stable structures in some data
scans. The 13th and 419th scan were sampled. In Figure 17, the Parallel and Vertical in two scans
were lower than in dataset 1, and they were in default state after loop evaluation. Arc segments were
extracted in two scans. In Figure 17, we can see that the sole vertical in the 13th scan was matched well
with one vertical in the 419th scan. All arc segments in the two scans matched well. Single lines were
also matched in order to upgrade the result reliability, and the same excellent matching result was
shown in Table 2—seven pairs of single lines among two scans were well-matched.

(d) (e)

Figure 17. Structure matching results in Dataset 2. (a) The 419th and 13th scan. (b) All Simplified
Structure; (c) Single line; (d) Vertical; (e) Arc segment. Green—the 419th scan; Red—the 13th scan.
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4.3.3. Dataset 3

Dataset 3 was an undergrounding parking lot. It had two challenges, moving vehicles and pillars
that partition parking space. The pillars may result in structure occlusion in some close position.
The 10150th and 490th scan were sampled. The arc segment was in default state after loop evaluation.
In Figure 18, four pairs of Vertical and three pairs of Parallel were matched. The matching similarity of
the second level (Parallel and Vertical) reached over 70%; these two scans could be considered as a
loop. Similar to Section 4.3.2, the first-level structure was matched to improve the reliability. In Table 2,
there were 13 and 15 first-level structures in two scans, respectively, and 12 pairs were well-matched.

(©) (d)

Figure 18. Matching results of structure in Dataset 3. (a) The 10150th and 490th scan original point
cloud. (b) All Simplified Structures (Single line); (c) Parallel; (d) Vertical; Green—the 10150th scan;
Red—the 490th scan. The robust arc segment was not detected, so all Simplified Structures were
equivalent to a single line segment.

5. Discussion

5.1. Similarity Matrix

The similarity matrix [37,38] was also applied in our method evaluation; the colored area
represented similar scans. In Figure 19, our similarity matrix is consistent with the ground truth
similarity matrix. The number on the figure is the key scan serial number. Dataset 1 (Figure 19a,d):
there were three loops near A and B, and two near the other parts, which was also detected in our
method. G was an empty spacious vicinity near the elevator, deviating from the corridor, where the
Lidar moved slowly for a period of time, resulting in many similar areas from the 400th to 500th scan.
Dataset 2 (Figure 19b,e): the loop in A E H I was detected effectively in our experiment. Dataset
3 (Figure 19¢,f): CDE was a back-and-forth route where the loop mainly occurred. They were also
labeled in our similarity matrix. However, due to the occlusion of scene structure and other reasons,
there were some defects in the contour of similar matrixes. In Figure 19, we marked some loops that
were undetected in our method (red rectangle), such as AB in Dataset 1, Al in Dataset 2, AD in Dataset
3. In Dataset 3, the 900th and 500th key scan were mistaken as a loop due to the high similarity of
parking space structure (green rectangle). There are only few false cases in our experiments. Since the
purpose of our method was to find the global loop fast and accurately, missing loops did not impair the
method performance as long as loop detection was accurate enough. These false loops can be further
eliminated through comparative analysis among candidate loop scans.
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Figure 19. Similarity matrix. (a—c) Similarity matrix from ground truth; (d—f) similarity matrix from
our method. Red rectangle represents undetected loop scans; Green rectangle represents wrong loop
scans. Column 1: dataset 1; column 2: dataset 2; column 3: dataset 3. The row and column in matrix
were key scan sequence number. The number represents the key scan serial number. This means that 1
represents the 5th scan point cloud in dataset 1, the first scan in dataset 2, and the 10th scan in dataset 3.
A, B ... Iin the figure refers to the position in three datasets.

5.2. Error Metrics

Our task was to ensure the accuracy of detected loops and eliminate any false loops as much as
possible. Obviously, there would be many negative matches when global LCD was performed in many
scans. That is why Negative Predictive Value (NPV) and Accuracy (ACC) were also adopted besides
Precision (PPV) and Recall (TPR). PPV in Formula (12) refers to the rate of detecting true loop, TPR in
Formula (13) indicated that the rate of all loops had been found, NPV in Formula (14) indicated the
exclusion rate of a non-loop, and ACC in Formula (15) represented the rate of our right decision. NPV
is an effective metric to verify the capability to exclude the non-loop accurately in global LCD. Our
method was evaluated quantitatively with the four indicators

TP
PPV = TP EP (12)
TPR = TPZ—PFN (13)
NPV = % (14)
ACC= 757 g\)li?l\?]—i— FN (15)

where TP, true positive, is the correctly detected matching scan, FP, false positive, is the incorrectly
detected matching scan, TN, true negative, is the correctly detected non-matching scan, FN, false
negative, is the incorrectly detected non-matching scan.
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In Table 3, both the NPV average and ACC average in three datasets reached over 0.95, the PPV
average in dataset 1, 2 were higher than 0.90 and that in dataset 3 was 0.8761. Low TPR was the biggest
drawback, but it would not affect the performance of LCD, as mentioned above. The precision of some
scans was less than 0.5, as shown in Figure 20a—c, and there may be two possible reasons: (1) there are
few Simplified Structures in those places, and (2) the laser was obstructed due to some interference
factors such as pedestrians or moving vehicles; in Figure 20a—c, the low-precision scans are close to
each other. The situation happened more, and some false loops were found in dataset 3.

Table 3. The average of the four error metrics.

Error Metric Average

Dataset
Precision (PPV) Recall (TPR) Negative Predictive Value (NPV) Accuracy (ACC)
Dataset 1 0.9050 0.3405 0.9706 0.9692
Dataset 2 0.9002 0.5177 0.9762 0.9748
Dataset 3 0.8761 0.1774 0.9702 0.9690

(d) (e) )

Figure 20. Error metrics of method. (a—c) are the PPV and TPR for dataset 1 2 3 respectively. (d-f) are
the NPV and ACC for dataset 1 2 3 respectively. Column 1: dataset 1; column 2: dataset 2; column3:
dataset3. Blue asterisk: PPV; red hollow circle: TPR; black hollow triangle: NPV; magenta dot: ACC.

6. Conclusions

In this paper, we propose an offline global LCD method for low-cost Lidar (16 lines) in indoor
scene to improve the robustness and efficiency of indoor SLAM. Adopting the proposed “Simplified
Structure” is effective to capture a robust point cloud structure. It utilizes a few points to transform
environment information that is hard to distinguish visually into an intelligible geometric structure.
It is extremely suitable for a structural indoor scene that has some piecewise walls, robust pillars or
other robust structures. In our method, if two scans are identified successfully, we can also obtain
the transformation parameters that can be used for point cloud registration. Our method can offer a
desirable global LCD performance and the precision of our method basically satisfies the accuracy
requirements in SLAM.

The “Simplified Structure” we propose is a robust feature description for structured indoor point
cloud scene. Our proposed LCD method benefits from the “Simplified Structure”. If a Simplified
Structure is applied in laser SLAM, the data memory will be reduced significantly. We test the method
on three typical datasets and acquire desirable results. Our global LCD method is especially suitable
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for a sparse Lidar point cloud and detects global loop successfully. Its precision reaches nearly 0.9
despite the low recall. Although the experiment is performed offline, its accuracy and efficiency meet
the localization performance requirements in SLAM. The registering suitability analysis based on a
“Simplified Structure” is very valued for point cloud registration work.

Improving the instability of the positioning system is an important task in the field of robots.
Our LCD method can effectively improve the robot localization performance to ensure the regular
operation process according the error analysis. Generally, simplified structured information is abundant
in an indoor environment, which is very beneficial to our method. Our method has several remarkable
characteristics, low cost, fast detection, and no Pseudo-GNSS/INS module. This is very beneficial
to some low-speed robots, and our fast LCD method can improve the positioning accuracy of the
robot and avoid accidents. This method is also effective for low-cost Lidar, which can avoid being
applied to expensive equipment and wasting resources. It can be applied to robot products integrating
a slam framework.

The objects described by “Simplified Structure” are those stable scene structures. The structure
extraction result is susceptible to moving objects, because they will break the structural integrity.
Therefore, a dynamic interference objects removal technology needs to be studied. In addition, we will
try to apply our global LCD method to an online SLAM system. We will consider more types of
Simplified Structures and extend the method to some compact outdoor scenes.
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