A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring
Abstract
:1. Introduction
2. Design Considerations for the Multi-Gas Sensor
2.1. Spectral Coverage of the QCLs and Absorption Lines of the Analytes
2.2. Opto-Mechanics
2.3. 2f-Wavelength Modulation Spectroscopy
2.4. Electronic Parts
3. Experiments with 2f-Wavelength Modulation Spectroscopy
3.1. Lab Evaluation
3.2. Field Evaluation of CO, NO and NO2
4. Heterodyne Phase Sensitive Dispersion Spectroscopy to Quantify High CO Concentrations
4.1. Required Modifications
4.2. Calibration of CO
4.3. Field Test and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der A, R.J.; Mijling, B.; Ding, J.; Koukouli, M.E.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the Air: Effectiveness of Air Quality Policy for SO2 and NOx Emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air Pollution and Control Action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- César, A.C.G.; Carvalho, J.A.; Nascimento, L.F.C. Association between NOx Exposure and Deaths Caused by Respiratory Diseases in a Medium-Sized Brazilian City. Braz. J. Med. Biol. Res. 2015, 48, 1130–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roths, J.; Zenker, T.; Parchatka, U.; Wienhold, F.G.; Harris, G.W. Four-Laser Airborne Infrared Spectrometer for Atmospheric Trace Gas Measurements. Appl. Opt. 1996, 35, 7075–7084. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.A.; Stanton, A.C. Airborne Measurements of Humidity Using a Single-Mode Pb–Salt Diode Laser. Appl. Opt. 1987, 26, 2558–2566. [Google Scholar] [CrossRef]
- Werle, P.; Maurer, K.; Kormann, R.; Mücke, R.; D’Amato, F.; Lancia, T.; Popov, A. Spectroscopic Gas Analyzers Based on Indium-Phosphide, Antimonide and Lead-Salt Diode-Lasers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 2361–2372. [Google Scholar] [CrossRef]
- Werle, P.; Kormann, R. Fast Chemical Sensor for Eddy-Correlation Measurements of Methane Emissions from Rice Paddy Fields. Appl. Opt. 2001, 40, 846–858. [Google Scholar] [CrossRef]
- Schiff, H.I.; Karecki, D.R.; Harris, G.W. A Tunable Diode Laser System for Aircraft Measurements of Trace Gases. J. Geophys. Res. 1990, 95, 10147–10153. [Google Scholar] [CrossRef] [Green Version]
- Webster, C.R.; Menzies, R.T. In Situ Measurement of Stratospheric Nitric Oxide Using a Balloon-Borne Tunable Diode Laser Spectrometer. Appl. Opt. 1984, 23, 1140–1142. [Google Scholar] [CrossRef]
- Butler, J.F.; Calawa, A.R.; Phelan, R.J.; Harman, T.C.; Strauss, A.J.; Rediker, R.H. PbTe Diode Laser. Appl. Phys. Lett. 1964, 5, 75–77. [Google Scholar] [CrossRef]
- Butler, J.F.; Calawa, A.R.; Phelan, R.J.; Strauss, A.J.; Rediker, R.H. PbSe Diode Laser. Solid State Commun. 1964, 2, 303–304. [Google Scholar] [CrossRef]
- Wormhoudt, J.; Herndon, S.C.; Yelvington, P.E.; Miake-Lye, R.C.; Wey, C. Nitrogen Oxide (NO/NO2/HONO) Emissions Measurements in Aircraft Exhausts. J. Propuls. Power 2007, 23, 906–911. [Google Scholar] [CrossRef]
- McManus, J.B.; Shorter, J.H.; Nelson, D.D.; Zahniser, M.S.; Glenn, D.E.; McGovern, R.M. Pulsed Quantum Cascade Laser Instrument with Compact Design for Rapid, High Sensitivity Measurements of Trace Gases in Air. Appl. Phys. B Lasers Opt. 2008, 92, 387–392. [Google Scholar] [CrossRef]
- Schiller, C.L.; Bozem, H.; Gurk, C.; Parchatka, U.; Königstedt, R.; Harris, G.W.; Lelieveld, J.; Fischer, H. Applications of Quantum Cascade Lasers for Sensitive Trace Gas Measurements of CO, CH4, N2O and HCHO. Appl. Phys. B 2008, 92, 419–430. [Google Scholar] [CrossRef]
- Khan, A.; Sun, K.; Miller, D.J.; Zondlo, M.A. Simultaneous Detection of Atmospheric Nitrous Oxide and Carbon Monoxide Using a Quantum Cascade Laser. In Proceedings of the SPIE 2011, Orlando, FL, USA, 25–29 April 2011. [Google Scholar]
- Hübner, M.; Welzel, S.; Marinov, D.; Guaitella, O.; Glitsch, S.; Rousseau, A.; Röpcke, J. TRIPLE Q: A Three Channel Quantum Cascade Laser Absorption Spectrometer for Fast Multiple Species Concentration Measurements. Rev. Sci. Instrum. 2011, 82, 093102. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.D.; McManus, J.B.; Herndon, S.C.; Shorter, J.H.; Zahniser, M.S.; Blaser, S.; Hvozdara, L.; Muller, A.; Giovannini, M.; Faist, J. Characterization of a Near-Room-Temperature, Continuous-Wave Quantum Cascade Laser for Long-Term, Unattended Monitoring of Nitric Oxide in the Atmosphere. Opt. Lett. 2006, 31, 2012–2014. [Google Scholar] [CrossRef]
- Li, J.; Parchatka, U.; Fischer, H. Development of Field-Deployable QCL Sensor for Simultaneous Detection of Ambient N2O and CO. Sens. Actuators B. Chem. 2013, 182, 659–667. [Google Scholar] [CrossRef]
- Ma, Y.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS Based Ppb-Level Detection of CO and N2O Using a High Power CW DFB-QCL. Opt. Express 2013, 21, 1008–1019. [Google Scholar] [CrossRef] [Green Version]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]
- Maamary, R.; Cui, X.; Fertein, E.; Augustin, P.; Fourmentin, M.; Dewaele, D.; Cazier, F.; Guinet, L.; Chen, W. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France). Sensors 2016, 16, 224. [Google Scholar] [CrossRef]
- Hundt, P.M.; Tuzson, B.; Aseev, O.; Liu, C.; Scheidegger, P.; Looser, H.; Kapsalidis, F.; Shahmohammadi, M.; Faist, J.; Emmenegger, L. Multi-Species Trace Gas Sensing with Dual-Wavelength QCLs. Appl. Phys. B 2018, 124, 108. [Google Scholar] [CrossRef]
- Reidl-Leuthner, C.; Ofner, J.; Tomischko, W.; Lohninger, H.; Lendl, B. Simultaneous Open-Path Determination of Road Side Mono-Nitrogen Oxides Employing Mid-IR Laser Spectroscopy. Atmos. Environ. 2015, 112, 189–195. [Google Scholar] [CrossRef]
- Yu, Y.; Sanchez, N.P.; Lou, M.; Zheng, C.; Wu, H.; Głuszek, A.K.; Hudzikowski, A.J.; Griffin, R.J.; Tittel, F.K. CW DFB-QCL- and EC-QCL-Based Sensor for Simultaneous NO and NO2 Measurements via Frequency Modulation Multiplexing Using Multi-Pass Absorption Spectroscopy. Proceedings 2017, 10111, 1011108. [Google Scholar]
- Wu, H.; Yin, X.; Dong, L.; Jia, Z.; Zhang, J.; Liu, F.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; et al. Ppb-Level Nitric Oxide Photoacoustic Sensor Based on a Mid-IR Quantum Cascade Laser Operating at 52 °C. Sens. Actuators B Chem. 2019, 290, 426–433. [Google Scholar] [CrossRef]
- Li, S.; Dong, L.; Wu, H.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Tittel, F.K. Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork. Anal. Chem. 2019, 91, 5834–5840. [Google Scholar] [CrossRef]
- Chen, K.; Liu, S.; Zhang, B.; Gong, Z.; Chen, Y.; Zhang, M.; Deng, H.; Guo, M.; Ma, F.; Zhu, F.; et al. Highly Sensitive Photoacoustic Multi-Gas Analyzer Combined with Mid-Infrared Broadband Source and near-Infrared Laser. Opt. Lasers Eng. 2020, 124, 105844. [Google Scholar] [CrossRef]
- Waclawek, J.P.; Kristament, C.; Moser, H.; Lendl, B. Balanced-Detection Interferometric Cavity-Assisted Photothermal Spectroscopy. Opt. Express 2019, 27, 12183–12195. [Google Scholar] [CrossRef]
- Mikołajczyk, J.; Bielecki, Z.; Wojtas, J.; Chojnowski, S. Cavity Enhanced Absorption Spectroscopy in Air Pollution Monitoring. Sens. Transducers 2015, 193, 63–66. [Google Scholar]
- Daghestani, N.S.; Brownsword, R.; Weidmann, D. Analysis and Demonstration of Atmospheric Methane Monitoring by Mid-Infrared Open-Path Chirped Laser Dispersion Spectroscopy. Opt. Express 2014, 22, 1731–1743. [Google Scholar] [CrossRef]
- Hugi, A.; Terazzi, R.; Bonetti, Y.; Wittmann, A.; Fischer, M.; Beck, M.; Faist, J.; Gini, E. External Cavity Quantum Cascade Laser Tunable from 7.6 to 11.4 Μm. Appl. Phys. Lett. 2009, 95, 061103. [Google Scholar] [CrossRef]
- Wieland, K.; Lendl, B.; Ramer, G.; Centrone, A.; Weiss, V.U.; Allmaier, G. Nanoscale Chemical Imaging of Individual Chemotherapeutic Cytarabine-Loaded Liposomal Nanocarriers. Nano Res. 2019, 12, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ramer, G.; Reisenbauer, F.; Steindl, B.; Tomischko, W.; Lendl, B. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging. Appl. Spectrosc. 2017, 71, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Schwaighofer, A.; Brandstetter, M.; Lendl, B. Quantum Cascade Lasers (QCLs) in Biomedical Spectroscopy. Chem. Soc. Rev. 2017, 46, 5903–5924. [Google Scholar] [CrossRef] [Green Version]
- Alcaráz, M.R.; Schwaighofer, A.; Kristament, C.; Ramer, G.; Brandstetter, M.; Goicoechea, H.; Lendl, B. External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution. Anal. Chem. 2015, 87, 6980–6987. [Google Scholar] [CrossRef]
- Sun, J.; Ding, J.; Liu, N.; Yang, G.; Li, J. Detection of Multiple Chemicals Based on External Cavity Quantum Cascade Laser Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 191, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Buerki, P.R.; Dong, L.; Reed, M.; Day, T.; Tittel, F.K. QEPAS Detector for Rapid Spectral Measurements. Appl. Phys. B Lasers Opt. 2010, 100, 173–180. [Google Scholar] [CrossRef]
- Faist, J.; Gmachl, C.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Distributed Feedback Quantum Cascade Lasers. Appl. Phys. Lett. 1997, 70, 2670–2672. [Google Scholar] [CrossRef]
- Lee, B.G.; Belkin, M.A.; Pflugl, C.; Diehl, L.; Zhang, H.A.; Audet, R.M.; MacArthur, J.; Bour, D.P.; Corzine, S.W.; Hofler, G.E.; et al. DFB Quantum Cascade Laser Arrays. IEEE J. Quantum Electron. 2009, 45, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Rauter, P.; Capasso, F. Multi-Wavelength Quantum Cascade Laser Arrays. Laser Photonics Rev. 2015, 9, 452–477. [Google Scholar] [CrossRef] [Green Version]
- Kapsalidis, F.; Shahmohammadi, M.; Süess, M.J.; Wolf, J.M.; Gini, E.; Beck, M.; Hundt, M.; Tuzson, B.; Emmenegger, L.; Faist, J. Dual-wavelength DFB Quantum Cascade Lasers: Sources for Multi-species Trace Gas Spectroscopy. Appl. Phys. B 2018, 124, 107. [Google Scholar] [CrossRef] [Green Version]
- Mujagić, E.; Schwarzer, C.; Yao, Y.; Chen, J.; Gmachl, C.; Strasser, G. Two-Dimensional Broadband Distributed-Feedback Quantum Cascade Laser Arrays. Appl. Phys. Lett. 2011, 98, 141101. [Google Scholar] [CrossRef]
- Harrer, A.; Szedlak, R.; Schwarz, B.; Moser, H.; Zederbauer, T.; MacFarland, D.; Detz, H.; Andrews, A.M.; Schrenk, W.; Lendl, B.; et al. Mid-Infrared Surface Transmitting and Detecting Quantum Cascade Device for Gas-Sensing. Sci. Rep. 2016, 6, 21795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S. HITRAN Application Programming Interface (HAPI): A Comprehensive Approach to Working with Spectroscopic Data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Reid, J.; Labrie, D. Second-Harmonic Detection with Tunable Diode Lasers—Comparison of Experiment and Theory. Appl. Phys. B 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.G.; Hu, M.; Shen, J.K.; Niu, E.C.; Xu, Z.Y.; Fan, X.L.; Wei, M.; Yao, L.; He, Y.B.; et al. Highly-Sensitive NO, NO2, and NH3 Measurements with an Open-Multipass Cell Based on Mid-Infrared Wavelength Modulation Spectroscopy. Chin. Phys. B 2018, 27, 040701. [Google Scholar] [CrossRef]
- Dang, J.; Yu, H.; Zheng, C.; Wang, L.; Sui, Y.; Wang, Y. Development a Low-Cost Carbon Monoxide Sensor Using Homemade CW-DFB QCL and Board-Level Electronics. Opt. Laser Technol. 2018, 101, 57–67. [Google Scholar] [CrossRef]
- Li, J.; Parchatka, U.; Königstedt, R.; Fischer, H. Real-Time Measurements of Atmospheric CO Using a Continuous-Wave Room Temperature Quantum Cascade Laser Based Spectrometer. Opt. Express 2012, 20, 7590–7601. [Google Scholar] [CrossRef]
- Martín-Mateos, P.; Hayden, J.; Acedo, P.; Lendl, B. Quantum-Cascade-Laser-Based Heterodyne Phase-Sensitive Dispersion Spectroscopy in the Mid-IR Range: Capabilities and Limitations. In Proceedings of the SPIE 2017, San Diego, CA, USA, 6–10 August 2017. [Google Scholar]
- Martín-Mateos, P.; Acedo, P. Heterodyne Phase-Sensitive Detection for Calibration-Free Molecular Dispersion Spectroscopy. Opt. Express 2014, 22, 15143–15153. [Google Scholar] [CrossRef]
Manufacturer | Analyte | Wavenumbers (cm−1) | Temperature (°C) | Current Ramp (mA) | Modulation (mA) |
---|---|---|---|---|---|
AdTech Optics | CO | 2179.77 | 20.85 | 297.0–300.2 | 1.0 |
N2O | 2180.42 | 17.61 | 297.0–300.2 | 1.1 | |
AdTech Optics | NO | 1900.08 | 21.09 | 514.0–520.0 | 1.6 |
AdTech Optics | NO2 | 1630.33 | 27.57 | 640.2–646.5 | 2.8 |
Alpes Lasers | SO2 | 1380.93 | 3.95 | 625.0–640.0 | 5.2 |
Analyte | Calibration R2 | SNR at 100 ppbv, 1 Hz Sample Rate | 1σ Detection Limit (ppbv), 1 Hz Sample Rate |
---|---|---|---|
CO | 0.99918 | 308 | 0.32 |
NO | 0.99998 | 224 | 0.45 |
N2O | 0.99798 | 40 | 2.51 |
NO2 | 0.99990 | 233 | 0.43 |
SO2 | 0.99978 | 71 | 1.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genner, A.; Martín-Mateos, P.; Moser, H.; Lendl, B. A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring. Sensors 2020, 20, 1850. https://doi.org/10.3390/s20071850
Genner A, Martín-Mateos P, Moser H, Lendl B. A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring. Sensors. 2020; 20(7):1850. https://doi.org/10.3390/s20071850
Chicago/Turabian StyleGenner, Andreas, Pedro Martín-Mateos, Harald Moser, and Bernhard Lendl. 2020. "A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring" Sensors 20, no. 7: 1850. https://doi.org/10.3390/s20071850
APA StyleGenner, A., Martín-Mateos, P., Moser, H., & Lendl, B. (2020). A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring. Sensors, 20(7), 1850. https://doi.org/10.3390/s20071850