Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Scenario
2.3. Acquisition of EEG Signals
2.4. Inter-Trial Coherence (ITC) Analysis of EEG Signals
2.5. Brain Connectivity with Phase Locking Value (PLV)
3. Results
3.1. EEG-Inter-Trial Coherence (ITC) Results
3.2. Differences in EEG Activities between Male And Female Subjects
3.3. Brain Connectivity under Human Inhibitory Control using Visual and Auditory Stimuli
4. Discussion
4.1. Neural Oscillations under Inhibition with Visual and Auditory Stimuli
4.2. Brain Dynamics under Human Inhibitory Control
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, A.J. Visual influences on auditory spatial learning. Phil. Trans. R. Soc. 2009, 364, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Martini, F.; Nath, J. Anatomy and Physiology, 2nd ed.; Benjamin Cummings: San Francisco, CA, USA, 2010; ISBN 978-0-321-59713-7. [Google Scholar]
- Nicholls, J.; Martin, A.R.; Wallace, B.; Fuchs, P. From Neuron to Brain, 4th ed.; Sinauer: Sunderland, MA, USA, 2001; ISBN 0-87893-439. [Google Scholar]
- Senkowski, D.; Schneider, T.R.; Foxe, J.J.; Engel, A.K. Crossmodal binding by neural coherence: Implications for multisensory processing. Trends Neurosci. 2008, 31, 401–409. [Google Scholar] [CrossRef]
- Kaiser, J.; Naumer, M.J. Cortical Oscillations and Multisensory Interactions in Humans. In Multisensory Object Perception in the Primate Brain; Springer: Heidelberg, Germany, 2010; pp. 71–82. [Google Scholar]
- Busch, N.; Dubois, J.; VanRullen, R. The Phase of Ongoing EEG Oscillations Predicts Visual Perception. J. Neurosci. 2009, 29, 7869–7876. [Google Scholar] [CrossRef] [PubMed]
- Mathewson, K.E.; Gratton, G.; Fabiani, M.; Beck, D.M.; Ro, T. To see or not to see: Prestimulus alpha phase predicts visual awareness. J. Neurosci. 2009, 29, 2725–2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makeig, S.; Debener, S.; Onton, J.; Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 2004, 8, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tass, P.; Rosenblum, M.G.; Weule, J.; Kurths, J.; Pikovsky, A.; Volkmann, J. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 1998, 81, 3291–3294. [Google Scholar] [CrossRef]
- Palva, J.M.; Palva, J.M.; Kaila, K. Phase Synchrony among Neuronal Oscillations in the Human Cortex. J. Neurosci. 2005, 25, 3962–3972. [Google Scholar] [CrossRef] [Green Version]
- Basar, E. EEG-brain Dynamics: Relation Between EEG and Brain Evoked Potentials; Elsevier: Amsterdam, The Nertherlands, 1980. [Google Scholar]
- Makeig, S.; Westerfield, M.; Jung, T.P.; Enghoff, S.; Townsend, J.; Courchesne, E.; Sejnowski, T.J. Dynamic Brain Sources of Visual Evoked Responses. Science 2002, 295, 690–694. [Google Scholar] [CrossRef] [Green Version]
- Kayser, C.; Petkov, C.I.; Logothetis, N.K. Visual Modulation of Neurons in Auditory Cortex. Cereb. Cortex 2008, 18, 1560–1574. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, P.; O’Connell, M.N.; Barczak, A.; Mills, A.; Javitt, D.C.; Schroeder, C.E. The Leading Sense: Supramodal Control of Neurophysiological Context by Attention. Neuron 2009, 64, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Thorne, J.D.; De Vos, M.; Viola, F.C.; Debener, S. Cross-Modal Phase Reset Predicts Auditory Task Performance in Humans. J. Neurosci. 2011, 31, 3853–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbruggen, F.; Logan, G.D.; Stevens, M.A. STOP-IT: Windows executable software for the stop-signal paradigm. Behav. Res. Methods 2008, 40, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elchlepp, H.; Lavric, A.; Chambers, C.D.; Verbruggen, F. Proactive inhibitory control: A general biasing account. Cogn. Psychol. 2016, 86, 27–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vingerhoets, G.; Acke, F.; Nys, J.; Vandemaele, P.; Achten, E.; Alderweireldt, A.-S. Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength. Hum. Brain Mapp. 2011, 33, 763–777. [Google Scholar] [CrossRef]
- Reid, C.S.; Serrien, D.J. Handedness and the excitability of cortical inhibitory circuits. Behav. Brain Res. 2012, 230, 144–148. [Google Scholar] [CrossRef]
- Verbruggen, F.; Logan, G.D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Logan, G.D. On the ability to inhibit thought and action: A users’ guide to the stop-signal paradigm. In Inhibitory Processes in Attention, Memory, and Language; Dagenbach, D., Carr, T.H., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 188–239. [Google Scholar]
- Serrien, D.J.; Orth, M.; Evans, A.H.; Lees, A.J.; Brown, P. Motor inhibition in patients with Gilles de la Tourette syndrome: Functional activation patterns as revealed by EEG coherence. Brain 2004, 128, 116–125. [Google Scholar] [CrossRef]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef]
- Aron, A.R.; Dowson, J.H.; Sahakian, B.; Robbins, T. Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Boil. Psychiatry 2003, 54, 1465–1468. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Ramos, J.; Guevara, M.A.; Arce, C.; Gutierrez, S. Gender Differencesm in the Eeg During Cognitive Activity. Int. J. Neurosci. 1993, 72, 257–264. [Google Scholar] [CrossRef]
- Jung, T.-P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T.J. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 2000, 111, 1745–1758. [Google Scholar] [CrossRef]
- Jung, T.-P.; Makeig, S.; McKeown, M.J.; Bell, A.J.; Lee, T.-W.; Sejnowski, T.J. Imaging brain dynamics using independent component analysis. Proc. IEEE 2001, 89, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onton, J.; Makeig, S. Information-based modeling of event-related brain dynamics. Prog Brain Res. Elsevier 2006, 159, 99–120. [Google Scholar]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp 1999, 8, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Ko, L.-W.; Shih, Y.-C.; Chikara, R.K.; Chuang, Y.-T.; Chang, E.C. Neural Mechanisms of Inhibitory Response in a Battlefield Scenario: A Simultaneous fMRI-EEG Study. Front. Hum. Neurosci. 2016, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Chikara, R.K.; Ko, L.W. Neural Activities Classification of Human Inhibitory Control Using Hierarchical Model. Sensors 2019, 19, 3791. [Google Scholar] [CrossRef] [Green Version]
- Driver, J.; Noesselt, T. Multisensory Interplay Reveals Crossmodal Influences on ‘Sensory-Specific’ Brain Regions, Neural Responses, and Judgments. Neuron 2008, 57, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Chikara, R.K.; Chang, E.C.; Lu, Y.-C.; Lin, D.-S.; Lin, C.-T.; Ko, L.-W. Monetary Reward and Punishment to Response Inhibition Modulate Activation and Synchronization Within the Inhibitory Brain Network. Front. Hum. Neurosci. 2018, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Duann, J.-R.; Ide, J.; Luo, X.; Li, C.-S.R. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J. Neurosci. 2009, 29, 10171–10179. [Google Scholar] [CrossRef] [Green Version]
- Noh, K.; Shin, K.S.; Shin, D.; Hwang, J.Y.; Kim, J.S.; Jang, J.H.; Chung, C.K.; Kwon, J.S.; Cho, K.-H. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia. BMC Syst. Boil. 2013, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumby, W.H.; Pollack, I. Visual contributions to speech intelligibility in noise. J. Acoust. Soc. Am. 1954, 26, 212–215. [Google Scholar] [CrossRef]
- McGurk, H.; Macdonald, J. Hearing lips and seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Mowery, T.; Kotak, V.C.; Sanes, D.H. The onset of visual experience gates auditory cortex critical periods. Nat. Commun. 2016, 7, 10416. [Google Scholar] [CrossRef] [Green Version]
- Giard, M.H.; Peronnet, F. Auditory-visual integration during multimodal object recognition in humans:a behavioral and electrophysiological study. J. Cogn. Neurosci. 1999, 11, 473–490. [Google Scholar] [CrossRef]
- Molholm, S.; Ritter, W.; Murray, M.M.; Javitt, D.C.; Schroeder, C.E.; Foxe, J.J. Multisensory auditory–visual interactions during early sensory processing in humans: A high-density electrical mapping study. Cogn. Brain Res. 2002, 14, 115–128. [Google Scholar] [CrossRef]
- Ko, L.W.; Lu, Y.C.; Bustince, H.; Chang, Y.C.; Chang, Y.; Ferandez, J.; Wang, Y.K.; Sanz, J.A.; Dimuro, G.P.; Lin, C.T. Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-Based Brain Computer Interface. IEEE Comput. Intell. Mag. 2019, 14, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Chikara, R.K.; Komarov, O.; Ko, L.W. Neural signature of event-related N200 and P300 modulation in parietal lobe during human response inhibition. Int. J. Comput. Biol. Drug Des. 2018, 11, 171–182. [Google Scholar] [CrossRef]
- Lin, C.-T.; Huang, T.-Y.; Liang, W.-C.; Chiu, T.-T.; Chao, C.-F.; Hsu, S.-H.; Ko, L.-W. Assessing Effectiveness of Various Auditory Warning Signals in Maintaining Drivers’ Attention in Virtual Reality-Based Driving Environments. Percept. Motor Skills 2009, 108, 825–835. [Google Scholar] [CrossRef]
- Lin, C.-T.; Huang, K.-C.; Chuang, C.-H.; Ko, L.-W.; Jung, T.-P. Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra. J. Neural Eng. 2013, 10, 056024. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, C.E.; Lakatos, P.; Kajikawa, Y.; Partan, S.; Puce, A. Neuronal oscillations and visual amplification of speech. Trends Cogn. Sci. 2008, 12, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, C.E.; Foxe, J.J. Multisensory contributions to low-level, ‘unisensory’ processing. Curr. Opin. Neurobiol. 2005, 15, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Bizley, J.K.; King, A.J. Visual-auditory spatial processing in auditory cortical neurons. Brain Res. 2008, 1242, 24–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.J. The superior colliculus. Curr. Biol. 2004, 14, R335–R338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, B.E.; Stanford, T.R. Multisensory integration: Current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 2008, 9, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Stanford, T.R.; Ramachandran, R.; Perrault, T.J.; Rowland, B.A. Challenges in quantifying multisensory integration: Alternative criteria, models, and inverse effectiveness. Exp. Brain Res. 2009, 198, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakowitz, O.W.; Quiroga, R.Q.; Schürmann, M.; Başar, E. Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials. Cogn. Brain Res. 2005, 23, 316–326. [Google Scholar] [CrossRef]
- Demiralp, T.; Bayraktaroğlu, Z.; Lenz, D.; Junge, S.; Busch, N.; Maess, B.; Ergen, M.; Herrmann, C.S. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int. J. Psychophysiol. 2007, 64, 24–30. [Google Scholar] [CrossRef]
- Lakatos, P.; Chen, C.-M.; O’Connell, M.N.; Mills, A.; Schroeder, C.E. Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 2007, 53, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Bowyer, S.M. Coherence a measure of the brain networks: Past and present. Neuropsychiatr. Electrophysiol. 2016, 2, 1051. [Google Scholar] [CrossRef]
- Thatcher, R.W.; Krause, P.J.; Hrybyk, M. Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalogr. Clin. Neurophysiol. 1986, 64, 123–143. [Google Scholar] [CrossRef]
- Tiesinga, P.; Sejnowski, T.J. Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence. Front. Hum. Neurosci. 2010, 4, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, M.; Blinowska, K.J.; Szelenberger, W. Topographic analysis of coherence and propagation of EEG activity during sleep wakefulness. EEG Clin. Neurophysiol. 1997, 102, 216–227. [Google Scholar] [CrossRef]
- Thatcher, R.W. Coherence, Phase Differences, Phase Shift, and Phase Lock in EEG/ERP Analyses. Dev. Neuropsychol. 2012, 37, 476–496. [Google Scholar] [CrossRef] [PubMed]
- Riddle, C.N.; Baker, S.N. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J. Physiol. 2005, 566, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H. Phase relationships of alpha rhythm in man. Jpn. J. Physiol. 1974, 24, 569–586. [Google Scholar] [CrossRef]
- Thatcher, R.W.; North, D.M.; Biver, C.J. Development of cortical connections as measured by EEG coherence and phase delays. Hum. Brain Mapp. 2008, 29, 1400–1415. [Google Scholar] [CrossRef]
- Naue, N.; Rach, S.; Strüber, D.; Huster, R.J.; Zaehle, T.; Körner, U.; Herrmann, C.S. Auditory Event-Related Response in Visual Cortex Modulates Subsequent Visual Responses in Humans. J. Neurosci. 2011, 31, 7729–7736. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikara, R.K.; Lo, W.-C.; Ko, L.-W. Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence. Sensors 2020, 20, 1722. https://doi.org/10.3390/s20061722
Chikara RK, Lo W-C, Ko L-W. Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence. Sensors. 2020; 20(6):1722. https://doi.org/10.3390/s20061722
Chicago/Turabian StyleChikara, Rupesh Kumar, Wei-Cheng Lo, and Li-Wei Ko. 2020. "Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence" Sensors 20, no. 6: 1722. https://doi.org/10.3390/s20061722
APA StyleChikara, R. K., Lo, W.-C., & Ko, L.-W. (2020). Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence. Sensors, 20(6), 1722. https://doi.org/10.3390/s20061722