Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications
Abstract
:1. Introduction
2. Design
2.1. MZDC Parameter Design
2.2. Schematic
2.3. OCT Brief Theory
3. Experiments and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drexler, W.E.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Brezinski, M.E. Optical Coherence Tomography: Principles and Applications; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Pircher, M. Development and Application of Optical Coherence Tomography; MDPI AG 2018- Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2018. [Google Scholar]
- Yurtsever, G.; Považay, B.; Alex, A.; Zabihian, B.; Drexler, W.; Baets, R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed. Opt. Express 2014, 5, 1050–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggleston, M.; Pardo, F.; Bolle, C.; Farah, R.; Fontaine, N.K.; Safar, H.; Cappuzzo, M.; Pollock, C.; Bishop, D.; Earnshaw, M. 90dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Akca, B.I.; Nguyen, V.D.; Kalkman, J.; Ismail, N.; Sengo, G.; Sun, F.; Driessen, A.; van Leeuwen, T.G.; Pollnau, M.; Worhoff, K.; et al. Towards spectral-domain optical coherence tomography on a chip. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1223–1233. [Google Scholar] [CrossRef]
- Moore, E.D.; Mcleod, R.R. Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness. Opt. Express 2011, 19, 8117–8126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Henry, C. Silica-based optical integrated circuits. IEE Proc. Optoelectron. 1996, 143, 263–280. [Google Scholar] [CrossRef]
- Huang, W.-P. Coupled-mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Maese-Novo, A.; Halir, R.; Romero-García, S.; Pérez-Galacho, D.; Zavargo-Peche, L.A.; Ortega-Moñux, A.; Molina-Fernández, I.; Wangüemert-Pérez, J.; Cheben, P. Wavelength independent multimode interference coupler. Opt. Express 2013, 21, 7033–7040. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2014, 23, 3795–3806. [Google Scholar] [CrossRef] [PubMed]
- Akca, B.I.; Považay, B.; Alex, A.; Wörhoff, K.; Ridder, R.M.D.; Drexler, W.; Pollnau, M. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt. Express 2013, 21, 16648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.-H.; Tu, Y.-C.; Huang, D.-W. Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm. Opt. Express 2012, 24, 30547–30561. [Google Scholar] [CrossRef]
- Little, B.; Murphy, T. Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures. IEEE Photonics Technol. Lett. 1997, 9, 1607–1609. [Google Scholar] [CrossRef]
- Hsu, S.-H. Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms. J. Opt. Soc. Am. B 2010, 27, 941–947. [Google Scholar] [CrossRef]
- Culemann, D.; Knuettel, A.; Voges, E. Integrated optical sensor in glass for optical coherence tomography (OCT). IEEE J. Sel. Top. Quantum Electron. 2000, 6, 730–734. [Google Scholar] [CrossRef]
- Yurtsever, G.; Komorowska, K.; Baets, R. Low dispersion integrated Michelson interferometer on silicon on insulator for optical coherence tomography. Opt. Coherence Tomogr. Coherence Tech. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.D.; Weiss, N.; Beeker, W.; Hoekman, M.; Leinse, A.; Heideman, R.G.; Van Leeuwen, T.G.; Kalkman, J. Integrated-optics-based swept-source optical coherence tomography. Opt. Lett. 2012, 37, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akca, B.I.; Doerr, C.R.; Sengo, G.; Wörhoff, K.; Pollnau, M.; Ridder, R.M.D. Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer. Opt. Express 2012, 20, 18313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Splitting Ratio | N | θ (rad) | ||
---|---|---|---|---|
10:90 | 8.485 | 1.317 | 1.039 | 1.327 |
30:70 | 4.402 | 1.446 | 0.910 | 1.15 |
50:50 | 3 | 1.571 | 0.785 | 1.047 |
Splitting Ratio | 10:90 | 30:70 | 50:50 |
---|---|---|---|
L1 (μm) | 93.77 | 103.22 | 112.39 |
L2 (μm) | 73.40 | 63.95 | 54.77 |
(μm) | 0.220 | 0.191 | 0.174 |
Mean percentage error | 1.64% | 2.87% | 2.99% |
Splitting Ratio | 10:90 | 30:70 | 50:50 | |
---|---|---|---|---|
Including bend part mean percentage error | Gap = 0.3 μm | 1.64% | 2.87% | 2.99% |
Gap = 0.22 μm | 1.29% | 1.98% | 1.93% | |
Excluding bend part mean percentage error | Gap = 0.3 μm | 1.75% | 3.37% | 4.01% |
Gap = 0.22 μm | 1.67% | 3.48% | 4.57% |
Splitting Ratio | 10:90 | 30:70 | 50:50 |
---|---|---|---|
First MZDC | 06:94 | 02:98 | 0:100 |
Second MZDC | 25:75 | 63:37 | 50:50 |
(μm) | 0.52 | 0.55 | 1.49 |
Mean percentage error | 0.61% | 1.48% | 1.19% |
Standard Deviation | 0.020 | 0.027 | 0.011 |
Splitting Ratio | Tandem MZDC SNR (dB) | MZDC SNR (dB) |
---|---|---|
10:90 | 99.42 | 65.45 |
30:70 | 84.11 | 58.94 |
50:50 | 87.82 | 53.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-T.; Widhianto, B.Y.B.; Hsu, S.-H.; Chang, C.-C. Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications. Sensors 2020, 20, 1054. https://doi.org/10.3390/s20041054
Lu Y-T, Widhianto BYB, Hsu S-H, Chang C-C. Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications. Sensors. 2020; 20(4):1054. https://doi.org/10.3390/s20041054
Chicago/Turabian StyleLu, Yi-Ting, Benedictus Yohanes Bagus Widhianto, Shih-Hsiang Hsu, and Che-Chang Chang. 2020. "Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications" Sensors 20, no. 4: 1054. https://doi.org/10.3390/s20041054
APA StyleLu, Y.-T., Widhianto, B. Y. B., Hsu, S.-H., & Chang, C.-C. (2020). Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications. Sensors, 20(4), 1054. https://doi.org/10.3390/s20041054