Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms
Abstract
1. Introduction
2. Methods
2.1. Data Collection
2.1.1. Data Collection in Laboratory Physical Model
2.1.2. Study Area and Data Collection in Field Survey
2.2. Alpha Shapes (AS) Algorithm
2.3. Hill Climbing-Region Growing (HC-RG) Algorithm
3. Results and Discussion
3.1. Laboratory Physical Model
3.1.1. Pebbles Deposit
3.1.2. Gravels Deposit
3.1.3. Mixture of Pebbles and Gravels Deposit
3.2. In-Situ Field Survey in Landslide Region
3.2.1. Upper Part of Landslide Accumulation
3.2.2. Lower Part of Landslide Accumulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orwin, J.; Clague, J.; Gerath, R. The Cheam rock avalanche, FraserValley, British Columbia, Canada. Landslide 2004, 1, 289–298. [Google Scholar] [CrossRef]
- Wang, F.W.; Cheng, Q.G.; Highland, L.; Miyajima, M.; Wang, H.B.; Yan, C.G. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China. Landslides 2009, 6, 47–54. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef]
- Tang, H.M.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China-Lessons learned from decades of research. Eng. Geol. 2019, 261, 10526. [Google Scholar] [CrossRef]
- Crosta, G.; Imposimato, S.; Roddeman, D. Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol. 2008, 109, 135–145. [Google Scholar] [CrossRef]
- Ni, H.Y.; Zheng, W.M.; Liu, X.L.; Gao, Y.C. Fractal-statistical analysis of grain-size distributions of debris-flow deposits and its geological implications. Landslides 2011, 8, 253–259. [Google Scholar] [CrossRef]
- Hewitt, K. Catastrophic landslide deposits in the Karakoram Himalaya. Science 1988, 242, 64–67. [Google Scholar] [CrossRef]
- Kulatilake, P.; Hudaverdi, T.; Wu, Q. New prediction models for mean particle size in rock blast fragmentation. Geotech. Geol. Eng. 2012, 30, 665–684. [Google Scholar] [CrossRef]
- Meddah, M.S.; Zitouni, S.; Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr. Build. Mater. 2010, 24, 505–512. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Bluck, B.J. Structure of gravel beaches and their relationship to tidal range. Sedimentology 2011, 58, 994–1006. [Google Scholar] [CrossRef]
- Van Aswegen, C.V.B.; Cunningham, H. The estimation of fragmentation in blast muckpiles by means of standard photographs. J. S. Afr. Inst. Min. Metall. 1986, 86, 469–474. [Google Scholar]
- Sim, Y.J.; Cho, G.; Song, K. Prediction of Fragmentation Zone Induced by Blasting in Rock. Rock Mech. Rock Eng. 2017, 50, 2177–2192. [Google Scholar] [CrossRef]
- Taboada, T.; Cortizas, A.M.; García, C.; García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 2006, 131, 218–236. [Google Scholar] [CrossRef]
- Kemeny, J.M.; Devgan, A.; Hagaman, R.M.; Wu, X.Q. Analysis of rock fragmentation using digital image processing. J. Geotech. Eng. 1993, 119, 1144–1160. [Google Scholar] [CrossRef]
- Hardy, A.J.; Kemeny, J.M. Block size distribution of rock masses using digital image processing of drill core. Int. J. Rock Mech. Min. Sci. 1997, 34, 303–307. [Google Scholar] [CrossRef]
- El-Hakim, S.F.; Brenner, C.; Roth, G. A multi-sensor approach to creating accurate virtual environments. J. Photogramm. Remote Sens. 1998, 53, 379–391. [Google Scholar] [CrossRef]
- Strouth, A.; Burk, R.L.; Eberhardt, E. The Afternoon Creek rockslide near Newhalem Washington. Landslides 2006, 3, 175–17922. [Google Scholar] [CrossRef]
- Franceschi, M.; Teza, G.; Preto, N.; Pesci, A.; Galgaro, A.; Girardi, S. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2009, 64, 522–528. [Google Scholar] [CrossRef]
- Spreafico, M.C.; Francioni, M.; Ceriv, F.; Stead, D.; Bitelli, G.; Ghirotti, M.; Borgatti, L. Back Analysis of the 2014 San Leo Landslide Using Combined Terrestrial Laser Scanning and 3D Distinct Element Modelling. Rock Mech. Rock Eng. 2016, 49, 2235–2251. [Google Scholar] [CrossRef]
- Lee, J.S.J.; Haralick, R.M.; Shapiro, L.G. Morphologic edge detection. IEEE J. Robot. Autom. 1987, 3, 142–156. [Google Scholar] [CrossRef]
- Rubin, D.M. A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment. J. Sediment. Res. 2004, 74, 160–165. [Google Scholar] [CrossRef]
- Buscombe, D.; Rubin, D.M.; Warrick, J.A. A universal approximation of grain size from images of noncohesive sediment. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Valéria, P.M.F.; Kanehisa, R.F.A.; Braz, G.; Aristófanes, C.S.; Paiva, A.C.D. Lung nodule classification based on shape distributions. In Proceedings of the 31st Annual ACM Symposium, Pisa, Italy, 4–8 April 2016. [Google Scholar] [CrossRef]
- Leng, X.X.; Xiao, J.; Wang, Y. A multi-scale plane-detection method based on the Hough transform and region growing. Photogramm. Rec. 2016, 31, 166–192. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Xia, D.; Wang, L.Q.; Zhao, B.B.; Teaway, J.W. Automated measurements of discontinuity geometric properties from a 3d-point cloud based on a modified region growing algorithm. Eng. Geol. 2018, 242, 44–54. [Google Scholar] [CrossRef]
- Teichmann, M.; Capps, M. Surface reconstruction with anisotropic density-scaled alpha shapes. Vis. IEEE 1998. [Google Scholar] [CrossRef]
- Vöge, M.; Lato, M.J.; Diederichs, M.S. Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng. Geol. 2013, 164, 155–162. [Google Scholar] [CrossRef]
- Cagnoli, B.; Romano, G.P. Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: Experimental results. J. Volcanol. Geotherm. Res. 2010, 196, 236–244. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Casagli, N. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef]
- Yin, Y.P.; Wang, W.P.; Zhang, N.; Yan, J.K.; Wei, Y.J. The June 2017 Maoxian landslide: Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake. Sci. China Technol. Sci. 2017, 60, 1762–1766. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Kirkpatrick, D.G.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef]
- Lou, S.; Jiang, X.; Scott, P.J. Application of the morphological alpha shape method to the extraction of topographical features from engineering surfaces. Measurement 2013, 46, 1002–1008. [Google Scholar] [CrossRef]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 26–31 July 1992; pp. 71–78. [Google Scholar] [CrossRef]
- Craig, R.F. Craig’s Soil Mechanics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Giesen, J.; Cazals, F.; Pauly, M.; Zomorodian, A. The conformal alpha shape filtration. Vis. Comput. 2006, 22, 531–540. [Google Scholar] [CrossRef]
- Fayed, M.; Mouftah, H.T. Localised alpha-shape computations for boundary recognition in sensor networks. Ad Hoc Netw. 2009, 7, 1259–1269. [Google Scholar] [CrossRef]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Gong, X.L.; Zhao, B.B.; Lu, Y.; Chen, Y.; Qiu, Y.S. Deformation monitoring of earth fissure hazards using terrestrial laser scanning. Sensors 2019, 19, 1463. [Google Scholar] [CrossRef]
- Hewitt, K.; Clague, J.J.; Orwin, J.F. Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Sci. Rev. 2008, 87, 1–38. [Google Scholar] [CrossRef]
- Ge, Y.F.; Tang, H.M.; Eldin, M.A.M.E.; Chen, H.Z.; Zhong, P.; Zhang, L.; Fang, K. Deposit characteristics of the Jiweishan rapid long-runout landslide based on field investigation and numerical modeling. Bull. Eng. Geol. Environ. 2019, 78, 4383–4396. [Google Scholar] [CrossRef]
Parameters | Methods | Materials | ||
---|---|---|---|---|
Pebbles | Gravels | Mixture | ||
Ra (mm) | AS | 17.06 | 16.2 | 16.75 |
HC-RG | 21.14 | 18.29 | 19.31 | |
MM | 18.38 | 17.59 | 18.58 | |
Cu | AS | 3.19 | 2.14 | 2.36 |
HC-RG | 1.52 | 1.73 | 1.7 | |
MM | 2.26 | 2.05 | 1.76 | |
Cc | AS | 1.15 | 1.09 | 1.15 |
HC-RG | 0.99 | 0.97 | 0.96 | |
MM | 1.17 | 0.99 | 1.11 |
Parameters | Methods | Location | |
---|---|---|---|
Upper Part | Lower Part | ||
Ra (mm) | AS | 242.38 | 281.96 |
HC-RG | 3478.13 | 3430.46 | |
MM | 2162.53 | 2040.81 | |
Cu | AS | 1.72 | 1.81 |
HC-RG | 1.24 | 1.22 | |
MM | 1.51 | 1.33 | |
Cc | AS | 0.76 | 0.69 |
HC-RG | 0.97 | 0.95 | |
MM | 0.96 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Lin, Z.; Tang, H.; Zhong, P.; Cao, B. Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors 2020, 20, 883. https://doi.org/10.3390/s20030883
Ge Y, Lin Z, Tang H, Zhong P, Cao B. Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors. 2020; 20(3):883. https://doi.org/10.3390/s20030883
Chicago/Turabian StyleGe, Yunfeng, Zishan Lin, Huiming Tang, Peng Zhong, and Bei Cao. 2020. "Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms" Sensors 20, no. 3: 883. https://doi.org/10.3390/s20030883
APA StyleGe, Y., Lin, Z., Tang, H., Zhong, P., & Cao, B. (2020). Measurement of Particle Size of Loose Accumulation Based on Alpha Shapes (AS) and Hill Climbing-Region Growing (HC-RG) Algorithms. Sensors, 20(3), 883. https://doi.org/10.3390/s20030883