# A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Filter Design

#### 2.1. Principle Mechanism

#### 2.2. SSPP Unit-Cell Analysis

#### 2.3. Theoretical Study of the CCRRs

## 3. Parametric Study

## 4. Fabrication and Measurement

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Garcia-Vidal, F.J.; Martino-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A Pure Appl. Opt.
**2005**, 7, S97. [Google Scholar] [CrossRef][Green Version] - Chau, Y.F.C.; Lee, C.; Huang, H.J.; Lin, C.T.; Chiang, H.P.; Mahadi, A.H.; Voo, N.Y.; Lim, C.M. Plasmonic effects arising from a grooved surface of a gold nanorod. J. Phys. D Appl. Phys.
**2017**, 50, 125302. [Google Scholar] [CrossRef] - Ye, L.; Feng, H.; Cai, G.; Zhang, Y.; Yan, B.; Liu, Q.H. High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips. Opt. Express
**2019**, 27, 22088–22099. [Google Scholar] [CrossRef] - Xu, K.D.; Guo, Y.J.; Deng, X. Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves. Opt. Express
**2019**, 27, 4354–4363. [Google Scholar] [CrossRef] [PubMed] - Ma, H.F.; Shen, X.; Cheng, Q.; Jiang, W.X.; Cui, T.J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev.
**2014**, 8, 146–151. [Google Scholar] [CrossRef] - Zhang, D.; Zhang, K.; Wu, Q.; Ding, X.; Sha, X. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies. Opt. Express
**2017**, 42, 2766–2769. [Google Scholar] [CrossRef] [PubMed] - Zhang, D.; Zhang, K.; Wu, Q.; Yang, G.; Sha, X. High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure. Opt. Lett.
**2015**, 25, 2121–2129. [Google Scholar] [CrossRef] - Farokhipour, E.; Komjani, N.; Chaychizadeh, M.A. An ultra-wideband three-way power divider based on spoof surface plasmon polaritons. J. Appl. Phys.
**2018**, 124, 235310. [Google Scholar] [CrossRef] - Wang, J.; Qu, S.; Ma, H.; Xu, Z.; Zhang, A.; Zhou, H.; Chen, H.; Li, Y. High-efficiency spoof plasmon polariton coupler mediated by gradient met surfaces. Appl. Phys. Lett.
**2012**, 101, 201104. [Google Scholar] [CrossRef] - Pang, L.; Hwang, G.M.; Slutsky, B.; Fainman, Y. Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl. Phys. Lett.
**2007**, 91, 123112. [Google Scholar] [CrossRef] - Yang, Y.; Li, Z.; Wang, S.; Chen, X.; Wang, J.; Guo, Y.J. Miniaturized High-Order-Mode Dipole Antennas Based on Spoof Surface Plasmon Polaritons. IEEE Antennas Wirel. Propag. Lett.
**2018**, 17, 2409–2413. [Google Scholar] [CrossRef] - Cselyuszka, N.; Sakotic, Z.; Kitic, G.; Crnojevic-Bengin, V.; Jankovic, N. Novel dual-band band-pass filters based on surface plasmon polariton-like propagation induced by structural dispersion of substrate integrated waveguide. Sci. Rep.
**2018**, 8, 1–11. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhang, H.C.; He, P.H.; Gao, X.; Tang, W.X.; Cui, T.J. Pass-band reconfigurable spoof surface plasmon polaritons. J. Phys. Condens. Matter
**2018**, 30, 134004. [Google Scholar] [CrossRef] [PubMed] - Chau, Y.F.C.; Chao, C.T.C.; Chiang, H.P. Ultra-broad bandgap metal-insulator-metal waveguide filter with symmetrical stubs and defects. Results Phys.
**2020**, 17, 103116. [Google Scholar] [CrossRef] - Wang, J.; Zhao, L.; Hao, Z.C. A band-pass filter based on the spoof surface plasmon polaritons and CPW-based coupling structure. IEEE Access
**2019**, 7, 35086–35096. [Google Scholar] [CrossRef] - Zhou, Y.J.; Xiao, Q.X.; Yang, B.J. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Sci. Rep.
**2015**, 5, 14819. [Google Scholar] [CrossRef][Green Version] - Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.P. Ultrawide Bandgap and High Sensitivity of a Plasmonic Metal-Insulator-Metal Waveguide Filter with Cavity and Baffles. Nanomaterials
**2020**, 10, 2030. [Google Scholar] [CrossRef] - Falcone, F.; Lopetegi, T.; Baena, J.D.; Marques, R.; Martin, F.; Sorolla, M. Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Compon. Lett.
**2004**, 14, 280–282. [Google Scholar] [CrossRef] - Liu, Y.; Yan, J.; Shao, Y.; Pan, J.; Zhang, C.; Hao, Y.; Han, G. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency. Appl. Opt.
**2016**, 55, 1720–1724. [Google Scholar] [CrossRef] - Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.P. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials
**2020**, 10, 493. [Google Scholar] [CrossRef][Green Version] - Kuo, T.N.; Lin, S.C.; Chen, C.H. Compact ultra-wideband bandpass filters using composite microstrip-coplanar-waveguide structure. IEEE Trans. Microw. Theory Tech.
**2006**, 54, 3772–3778. [Google Scholar] [CrossRef] - Baral, R.N.; Singhal, P.K. Miniaturized Microstrip Band pass Filter Using Coupled Metamaterial Resonators. Int. J. Microw. Optical Tech.
**2009**, 4, 2. [Google Scholar] - Wei, F.; Qin, P.Y.; Guo, Y.J.; Shi, X.W. Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure. IET Microw. Antennas Propag.
**2016**, 10, 230–236. [Google Scholar] [CrossRef] - Tang, C.W.; Chen, M.G. A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters. IEEE Trans. Microw. Theory Tech.
**2007**, 55, 2412–2418. [Google Scholar] [CrossRef] - Zhu, H.; Lin, J.Y.; Guo, Y.J. Wideband filtering out-of-phase power dividers using slotline resonators and microstrip-to-slotline transitions. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 919–922. [Google Scholar]
- Mehrabi, M.; Arsanjani, A.; Afrooz, K.; Tayarani, M. Compact reconfigurable triple-mode triple-band substrate integrated waveguide bandpass filter. Int. J. RF Microw. Comp. Eng.
**2019**, 30, e22099. [Google Scholar] [CrossRef] - Coves, A.; Penalva, G.T.; San-Blas, A.A.; Sanchez-Soriano, M.A.; Martellosio, A.; Bronchalo, E.; Bozzi, M. A novel band-pass filter based on a periodically drilled SIW structure. Radio Sci.
**2016**, 51, 328–336. [Google Scholar] [CrossRef][Green Version] - Zheng, G.; Su, W.; Chen, Y.; Zhang, C.; Lai, M.; Liu, Y. Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material. J. Opt.
**2012**, 14, 055001. [Google Scholar] [CrossRef] - Zhou, K.; Zhou, C.X.; Wu, W. Substrate-integrated waveguide dual-mode dual-band bandpass filters with widely controllable bandwidth ratios. IEEE Trans. Microw. Theory Technol.
**2017**, 65, 3801–3812. [Google Scholar] [CrossRef] - Zhang, Q.; Zhang, H.C.; Yin, J.Y.; Pan, B.C.; Cui, T.J. A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Sci. Rep.
**2016**, 6, 28256. [Google Scholar] [CrossRef][Green Version] - Xiao, B.; Kong, S.; Xiao, S. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide. Opt. Commun.
**2016**, 374, 13–17. [Google Scholar] [CrossRef][Green Version] - Xu, B.; Li, Z.; Liu, L.; Xu, J.; Chen, C.; Ning, P.; Chen, X.; Gu, C. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt. Lett.
**2015**, 40, 4683–4686. [Google Scholar] [CrossRef] [PubMed] - Pan, B.C.; Liao, Z.; Zhao, J.; Cui, T.J. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt. Express
**2014**, 22, 13940–13950. [Google Scholar] [CrossRef] [PubMed] - Tian, D.; Xu, R.; Xu, Z.; Zhang, A.; Shi, H. Multiband plasmonic filter based on double layer spoof surface plasmon polaritons. In Proceedings of the 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, China, 18–21 October 2016; pp. 925–927. [Google Scholar]
- Wang, Z.X.; Zhang, H.C.; Lu, J.; Xu, P.; Wu, L.W.; Wu, R.Y.; Cui, T.J. Compact filters with adjustable multi-band rejections based on spoof surface plasmon polaritons. J. Phys. D Appl. Phys.
**2018**, 52, 025107. [Google Scholar] [CrossRef] - Li, L.; Dong, L.; Chen, P.; Yang, K. Multi-band rejection filters based on spoof surface plasmon polaritons and folded split-ring resonators. Int. J. Microw. Wirel. Technol.
**2019**, 11, 774–781. [Google Scholar] [CrossRef] - Aziz, A.; Zhang, H.C.; He, P.H.; Tang, W.X.; Ren, Y.; Madni, H.A.; Cui, T.J. Multiple band-rejection filters in dual-frequency bands based on spoof surface plasmon polaritons. Int. J. Opt.
**2019**, 22, 015001. [Google Scholar] [CrossRef] - CST Software. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 10 March 2020).

**Figure 1.**Schematic of the proposed D-BRF through interaction between the coupled circular ring resonators (CCRRs) and the Spoof Surface Plasmon Polariton (SSPP)-based transmission lines (TL).

**Figure 2.**(

**a**) Effect of the groove depth on dispersion curve of the cell. (

**b**) The surface impedance of the cell by groove depth change in different frequencies. (

**c**) The distribution of E-field & H-field at three orthogonal planes (E-field at A-A’, and B-B’, H-field at z = 0).

**Figure 3.**(

**a**) Filter part of the D-BRF with two CCRRs coupled to the SSPP-TL. (

**b**) Signal flow-graph of the filter section.

**Figure 4.**Electric field lines of CCRRs, (

**a**) at the first resonance (${f}_{1}$ = 9.5 GHz) and (

**b**) at the second resonance (${f}_{2}$ = 20.9 GHz).

**Figure 5.**Scattering parameters of the D-BRF. (

**a**,

**b**) with different numbers of CCRRs (n). (

**c**,

**d**) with change of the CCRRs width (${W}_{R}$). By changing the ${W}_{R}$, the second resonance mode can be independently controlled within the frequency range of 19.6 to 22 GHz.

**Figure 6.**Scattering parameters of the D-BRF. (

**a**,

**b**) with different value of the CCRRs distance to the SSPP-TL (${y}_{R}$). (

**c**,

**d**) with change of the CCRRs radius (${R}_{R}$).

**Figure 7.**Scattering parameters of the filter and the independent movement of the first resonance by different value of the width and the radius of the resonators. The first resonance mode can be independently controlled within the frequency band from 9.4 to 10.1 GHz.

**Figure 8.**(

**a**) Picture of the fabricated sample. (

**b**) The simulation and experiment results of the D-BRF.

**Figure 9.**Electric-field distribution of the D-BRF, 0.2 mm above the structure, at different frequencies (in the rejection and pass bands). (

**a**) 3.5 GHz, (

**b**) 9.5 GHz, (

**c**) 15 GHz, (

**d**) 20.9 GHz, (

**e**) 27 GHz, and (

**f**) 35 GHz.

**Table 1.**Performances comparison of the proposed dual band-rejection-filter with traditional SSPP-based ones. The red is shown the advantages of this work, which is wide rejection bandwidth.

Ref. | SL or DL | ${\mathit{f}}_{0}$ (GHz) | FBW (%) | Depth (dB) | RL in SBs (dB) | IL in PBs (dB) | Tunability |
---|---|---|---|---|---|---|---|

[30] | SL | 8.21/10.4 | NBs | −34/−31 | NA | 2.8/2.6/2.6 | Yes |

[31] | SL | 5.36/9.32 | 1.61/1.29 | −30/−25 | NA | 3/2.3/2.4 | No |

[32] | DL | 4.04/4.5 | NBs | −7.5/−8 | −5/−5 | 0.3/0.3/0.3 | Yes |

[33] | SL | 7.65/9.47 | NBs | −15/−17 | −8/−8 | 2.5/2.3/2.6 | Yes |

[35] | DL | 9.15/11.55 | 5.5/9.5 | −40/−50 | NA | 0.8/1.2/1.9 | Yes |

[36] | DL | 18.6/22.6 | 5.2/6 | −43/−60 | −2.7/−2.4 | 0.9/2.7/1.3 | Yes |

[37] | SL | 6.4/6.8 | NBs | −20/−18 | NA | 2/2.5/2.8 | Yes |

Here | SL | 9.5/20.9 | 26.2/8.6 | −32/−25 | −2.5/−2.5 | 1.5/6.8/3.8 | Yes |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Farokhipour, E.; Mehrabi, M.; Komjani, N.; Ding, C.
A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth. *Sensors* **2020**, *20*, 7311.
https://doi.org/10.3390/s20247311

**AMA Style**

Farokhipour E, Mehrabi M, Komjani N, Ding C.
A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth. *Sensors*. 2020; 20(24):7311.
https://doi.org/10.3390/s20247311

**Chicago/Turabian Style**

Farokhipour, Ehsan, Mohammad Mehrabi, Nader Komjani, and Can Ding.
2020. "A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth" *Sensors* 20, no. 24: 7311.
https://doi.org/10.3390/s20247311