An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells
Abstract
1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Electrochemical Measurements
2.3. Dispersion of MoS2
2.4. Preparation of MoS2-Au-Ag/GCE
2.5. Detection of H2O2 Solutions with Different Concentrations and Released by Cells
3. Results and Discussion
3.1. Characterization of MoS2-Au-Ag/GCE Nanocomposite
3.2. Optimization of Experimental Parameters for the Fabrication of MoS2-Au-Ag/GCE
3.3. Electrocatalytic Activities of the Modified Electrodes
3.4. Amperometric Responses to H2O2
3.5. Repeatability and Stability of MoS2-Au-Ag/GCE
3.6. Detection of H2O2 Released from Normal Cells and Living Cancer Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Juang, F.-R.; Chern, W.-C. Octahedral Cu2O nanoparticles decorated by silver catalyst for high sensitivity nonenzymatic H2O2 detection. Mater. Sci. Semicond. Process. 2019, 101, 156–163. [Google Scholar] [CrossRef]
- Ohshima, H.; Tatemichi, M.; Sawa, T. Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 2003, 417, 3–11. [Google Scholar] [CrossRef]
- Ye, Y.; Kong, T.; Yu, X.; Wu, Y.; Zhang, K.; Wang, X. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 2012, 89, 417–421. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, T.; Yan, X.; Gu, Y.; Liu, H.; Xu, Z.; Xu, H.; Li, X.; Zhang, Z.; Yang, M. Facile synthesis of 3D N-doped porous carbon nanosheets as highly active electrocatalysts toward the reduction of hydrogen peroxide. Nanoscale 2018, 10, 14923–14930. [Google Scholar] [CrossRef]
- Zou, J.; Cai, H.H.; Wang, D.Y.; Xiao, J.Y.; Zhou, Z.M.; Yuan, B.L. Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system. Chemosphere 2019, 224, 646–652. [Google Scholar] [CrossRef]
- Yuan, J.C.; Shiller, A.M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal. Chem. 1999, 71, 1975–1980. [Google Scholar] [CrossRef]
- Yang, X.J.; Li, R.S.; Li, C.M.; Li, Y.F.; Huang, C.Z. Cobalt oxyhydroxide nanoflakes with oxidase-mimicking activity induced chemiluminescence of luminol for glutathione detection. Talanta 2020, 215. [Google Scholar] [CrossRef]
- Han, H.; He, X.; Wu, M.X.; Huang, Y.B.; Zhao, L.H.; Xu, L.L.; Ma, P.Y.; Sun, Y.; Song, D.Q.; Wang, X.H. A novel colorimetric and near-infrared fluorescence probe for detecting and imaging exogenous and endogenous hydrogen peroxide in living cells. Talanta 2020, 217. [Google Scholar] [CrossRef]
- Ren, M.G.; Deng, B.B.; Wang, J.Y.; Kong, X.Q.; Liu, Z.R.; Zhou, K.; He, L.W.; Lin, W.Y. A fast responsive two-photon fluorescent probe for imaging H2O2 in lysosomes with a large turn-on fluorescence signal. Biosens. Bioelectron. 2016, 79, 237–243. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, K.; Yang, H.; Li, Y.; Lan, H.; Liu, Y.; Zhang, X.; Yi, T. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal. Chem. 2014, 86, 9970–9976. [Google Scholar] [CrossRef]
- Diouf, A.; El Bari, N.; Bouchikhi, B. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 2020, 209, 120577. [Google Scholar] [CrossRef] [PubMed]
- Aragay, G.; Merkoci, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Liu, M.; Xie, S.B.; Zhou, J. Use of animal models for the imaging and quantification of angiogenesis. Exp. Anim. 2018, 67, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Rahman, M.A.; Rhee, C.K. Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal. Chem. 2012, 84, 6407–6415. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chen, Z.; Reinecke, B.N.; Jaramillo, T.F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, H.; Cho, J. MoS(2) nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830. [Google Scholar] [CrossRef]
- Zhang, A.; Li, A.; Zhao, W.; Liu, J. Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy. Chemistry 2018, 24, 4215–4227. [Google Scholar] [CrossRef]
- Huang, Z.C.; Zhang, A.M.; Zhang, Q.; Pan, S.J.; Cui, D.X. Electrochemical Biosensor Based on Dewdrop-Like Platinum Nanoparticles-Decorated Silver Nanoflowers Nanocomposites for H2O2 and Glucose Detection. J. Electrochem. Soc. 2019, 166, B1138–B1145. [Google Scholar] [CrossRef]
- Sangili, A.; Annalakshmi, M.C.; Chen, S.-M.; Balasubramanian, P.; Sundrarajan, M. Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos. Part B Eng. 2019, 162, 33–42. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J. Application of biosensors to detection of epidemic diseases in animals. Res. Vet. Sci. 2018, 118, 444–448. [Google Scholar] [CrossRef]
- Fani, M.; Rezayi, M.; Pourianfar, H.R.; Meshkat, Z.; Makvandi, M.; Gholami, M.; Rezaee, S.A. Rapid and label-free electrochemical DNA biosensor based on a facile one-step electrochemical synthesis of rGO-PPy-(L-Cys)-AuNPs nanocomposite for the HTLV-1 oligonucleotide detection. Biotechnol. Appl. Bioc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Chen, Y.; Dong, W.H.; Han, B.K.; Liu, M.; Chen, Q.; Zhou, J. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide. Oncotarget 2017, 8, 13039–13047. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Ndamanisha, J.C.; Bai, J.; Guo, L. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 2010, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ansari, S.A.; Lee, J.; Cho, M.H. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4692–4699. [Google Scholar] [CrossRef]
- Fu, Y.; Dai, J.; Ge, Y.; Zhang, Y.; Ke, H.; Zhang, W. A Novel Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on a Metal-Organic Framework/Carbon Nanofiber Composite. Molecules 2018, 23, 2552. [Google Scholar] [CrossRef]
- Lu, H.; Yu, S.; Fan, Y.; Yang, C.; Xu, D. Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids Surf. B Biointerfaces 2013, 101, 106–110. [Google Scholar] [CrossRef]
- Tang, N.; Zheng, J.; Sheng, Q.; Zhang, H.; Liu, R. A novel H2O2 sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode. Analyst 2011, 136, 781–786. [Google Scholar] [CrossRef]
- Pei, Y.; Hu, M.; Tang, X.; Huang, W.; Li, Z.; Chen, S.; Xia, Y. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal. Chim. Acta 2019, 1059, 49–58. [Google Scholar] [CrossRef]
- Guler, M.; Turkoglu, V.; Kivrak, A.; Karahan, F. A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO2-NH2 nanocomposites modified glassy carbon electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 454–460. [Google Scholar] [CrossRef]
- Hussain, S. Comparative efficacy of epigallocatechin-3-gallate against H2O2-induced ROS in cervical cancer biopsies and HeLa cell lines. Wspolczesna Onkol. 2017, 21, 209–212. [Google Scholar] [CrossRef]
Material | Sensitivity (µA mM−1 cm−2) | Detection Limit (µM) | Linear Range (mM) | Reference |
---|---|---|---|---|
Pt/OMCs | 184.6 | 1.2 | 0.5–4.5 | [23] |
Ag-TiO2 | 65.23 | 0.83 | 0.0083–0.0433 | [24] |
ZIF-67/CNFs | 323 | 0.62 | 0.0025–0.19 | [25] |
Pt-SnO2@C | 241.1 | 0.1 | 0.001–0.17 | [26] |
PANI/HRP/SWCNTs | 200 | 900 | 2.5–50 | [27] |
MoS2-Au-Ag | 405.24 | 7.19 | 0.05–20 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, C.; Li, X.; Du, X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors 2020, 20, 6817. https://doi.org/10.3390/s20236817
Hu J, Zhang C, Li X, Du X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors. 2020; 20(23):6817. https://doi.org/10.3390/s20236817
Chicago/Turabian StyleHu, Jinchun, Congcong Zhang, Xue Li, and Xin Du. 2020. "An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells" Sensors 20, no. 23: 6817. https://doi.org/10.3390/s20236817
APA StyleHu, J., Zhang, C., Li, X., & Du, X. (2020). An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors, 20(23), 6817. https://doi.org/10.3390/s20236817