Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks
Abstract
:1. Introduction
- (1)
- A new depth-based offset mode selection scheme of SAO is proposed for VVC. According to the partition depth of CTU, the edge offset (EO) mode and the band offset (BO) mode are adaptively selected.
- (2)
- A histogram of an oriented gradient (HOG) feature-based directional pattern selection scheme is proposed for EO mode. The HOG features [25] of CTU are extracted and input to the support vector machine (SVM). The best directional pattern is output, skipping the RDO calculation process and sample collection statistics of the other three directional patterns.
2. Related Work
3. Overview of SAO in VVC
3.1. Edge Offset (EO)
3.2. Band Offset (BO)
4. Proposed SAO Method
4.1. Motivation
4.2. Simplification of Offset Mode Selection
4.3. Simplification of EO Mode
4.3.1. Gradient Computation
4.3.2. HOG Features Calculation
4.3.3. Classification Based on SVM
4.4. Summary
5. Experimental Result
5.1. Experimental Design
5.2. Effectiveness Verification of HOG Features
5.3. Acceleration Performance Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cordeiro, P.J.; Assunçãa, P. Distributed Coding/Decoding Complexity in Video Sensor Networks. Sensors 2012, 12, 2693–2709. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Chen, L.; Sun, X. Low Complexity HEVC Encoder for Visual Sensor Networks. Sensors 2015, 15, 30115–30125. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Shi, H.; Wang, H.; Wang, R.; Fang, H. A Feature-Based Learning System for Internet of Things Applications. IEEE Internet Things J. 2019, 6, 1928–1937. [Google Scholar] [CrossRef]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Zarca, A.M.; Bernabe, J.B.; Skarmeta, A.; Calero, J.M.A. Virtual IoT HoneyNets to Mitigate Cyberattacks in SDN/NFV-Enabled IoT Networks. IEEE J. Sel. Areas Commun. 2020, 38, 1262–1277. [Google Scholar] [CrossRef]
- Hafeez, I.; Antikainen, M.; Ding, A.Y.; Tarkoma, S. IoT-KEEPER: Detecting Malicious IoT Network Activity Using Online Traffic Analysis at the Edge. IEEE Trans. Netw. Serv. Manag. 2020, 17, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhang, Z.; Wu, S.; Yang, J.; Wang, R. Biologically Inspired Resource Allocation for Network Slices in 5G-Enabled Internet of Things. IEEE Internet Things J. 2019, 6, 9266–9279. [Google Scholar] [CrossRef]
- Nightingale, J.; Salva-Garcia, P.; Calero, J.M.A.; Wang, Q. 5G-QoE: QoE Modelling for Ultra-HD Video Streaming in 5G Networks. IEEE Trans. Broadcast. 2018, 64, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Yang, J.; Du, B.; Tang, L. Down-Sampling Based Rate Control for Mobile Screen Video Coding. IEEE Access 2019, 7, 139560–139570. [Google Scholar] [CrossRef]
- Tang, T.; Du, B.; Tang, L.; Yang, J.; He, P. Distortion Propagation Based Quantization Parameter Cascading Method for Screen Content Video Coding. IEEE Access 2019, 7, 172526–172533. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Filippov, A.; Rufitskiy, V.; Chen, J.; Alshina, E. Intra Prediction in the Emerging VVC Video Coding Standard. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; p. 367. [Google Scholar]
- Amestoy, T.; Mercat, A.; Hamidouche, W.; Menard, D.; Bergeron, C. Tunable VVC Frame Partitioning Based on Lightweight Machine Learning. IEEE Trans. Image Process. 2020, 29, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Perfecto, C.; Elbamby, M.S.; Ser, J.D.; Bennis, M. Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework. IEEE Trans. Commun. 2020, 68, 2491–2508. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Moreira, R.; Cabral, J.; Dias, J.; Pinto, S. Wall Screen: An Ultra-High Definition Video-Card for the Internet of Things. IEEE MultiMedia 2020, 27, 76–87. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Sun, H.; Katto, J.; Jing, M. A Fast QTMT Partition Decision Strategy for VVC Intra Prediction. IEEE Access 2020, 8, 107900–107911. [Google Scholar] [CrossRef]
- Fu, C.; Alshina, E.; Alshin, A.; Huang, Y.; Chen, C.; Tsai, C.; Hsu, C.; Lei, S.; Park, J.; Han, W. Sample Adaptive Offset in the HEVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1755–1764. [Google Scholar] [CrossRef]
- Alshin, A.; Alshina, E.; Park, J. Sample Adaptive Offset Design in HEVC. In Proceedings of the 2013 Data Compression Conference, Snowbird, UT, USA, 20–22 March 2013; p. 475. [Google Scholar]
- Baldev, S.; Shukla, K.; Gogoi, S.; Rathore, P.K.; Peesapati, R. Design and Implementation of Efficient Streaming Deblocking and SAO Filter for HEVC Decoder. IEEE Trans. Consum. Electron. 2018, 64, 127–135. [Google Scholar] [CrossRef]
- Choi, Y.; Joo, J. Exploration of Practical HEVC/H.265 Sample Adaptive Offset Encoding Policies. IEEE Signal Process. Lett. 2015, 22, 465–468. [Google Scholar] [CrossRef]
- Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Complexity Analysis Of VVC Intra Coding. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, 25–28 October 2020; pp. 3119–3123. [Google Scholar]
- Pakdaman, F.; Adelimanesh, M.A.; Gabbouj, M.; Hashemi, M.R. Complexity Analysis Of Next-Generation VVC Encoding And Decoding. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, 25–28 October 2020; pp. 3134–3138. [Google Scholar]
- Aklouf, M.; Leny, M.; Dufaux, F.; Kieffer, M. Low Complexity Versatile Video Coding (VVC) for Low Bitrate Applications. In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 28–31 October 2019; pp. 22–27. [Google Scholar]
- Usman, M.A.; Usman, M.R.; Shin, S.Y. Exploiting the Spatio-Temporal Attributes of HD Videos: A Bandwidth Efficient Approach. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2418–2422. [Google Scholar] [CrossRef]
- Pan, X. Fusing HOG and convolutional neural network spatial-temporal features for video-based facial expression recognition. IET Image Process. 2020, 14, 176–182. [Google Scholar] [CrossRef]
- Joo, J.; Choi, Y.; Lee, K. Fast sample adaptive offset encoding algorithm for HEVC based on intra prediction mode. In Proceedings of the 2013 IEEE Third International Conference on Consumer Electronics Berlin (ICCE-Berlin), Berlin, Germany, 8–11 September 2013; pp. 50–53. [Google Scholar]
- Joo, J.; Choi, Y. Dominant edge direction based fast parameter estimation algorithm for sample adaptive offset in HEVC. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3749–3752. [Google Scholar]
- Zhengyong, Z.; Zhiyun, C.; Peng, P. A fast SAO algorithm based on coding unit partition for HEVC. In Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 September 2015; pp. 392–395. [Google Scholar]
- Gendy, S.E.; Shalaby, A.; Sayed, M.S. Fast parameter estimation algorithm for sample adaptive offset in HEVC encoder. In Proceedings of the 2015 Visual Communications and Image Processing (VCIP), Singapore, 13–16 December 2015; pp. 1–4. [Google Scholar]
- Kim, S.; Jeong, J.; Moon, J.; Kim, Y. Fast sample adaptive offset parameter estimation algorithm based on early termination for HEVC encoder. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–11 January 2017; pp. 241–242. [Google Scholar]
- Zhang, W.; Guo, C. Design and implementation of parallel algorithms for sample adaptive offset in HEVC based on GPU. In Proceedings of the 2016 Sixth International Conference on Information Science and Technology (ICIST), Dalian, China, 6–8 May 2016; pp. 181–187. [Google Scholar]
- de Souza, D.F.; Ilic, A.; Roma, N.; Sousa, L. HEVC in-loop filters GPU parallelization in embedded systems. In Proceedings of the 2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Samos, Greece, 19–23 July 2015; pp. 123–130. [Google Scholar]
- Wang, Y.; Guo, X.; Lu, Y.; Fan, X.; Zhao, D. GPU-based optimization for sample adaptive offset in HEVC. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 829–833. [Google Scholar]
- Wang, Y.; Guo, X.; Fan, X.; Lu, Y.; Zhao, D.; Gao, W. Parallel In-Loop Filtering in HEVC Encoder on GPU. IEEE Trans. Consum. Electron. 2018, 64, 276–284. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Huang, L.; Jiang, B. Fast CU Partition and Intra Mode Decision Method for H.266/VVC. IEEE Access. 2020, 8, 117539–117550. [Google Scholar] [CrossRef]
- Huang, Y.; Hsu, C.; Chen, C.; Chuang, T.; Hsiang, S.; Chen, C.; Chiang, M.; Lai, C.; Tsai, C.; Su, Y.; et al. A VVC Proposal With Quaternary Tree Plus Binary-Ternary Tree Coding Block Structure and Advanced Coding Techniques. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1311–1325. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, J.; Zhang, L.; Li, X.; Karczewicz, M. Enhanced Cross-Component Linear Model for Chroma Intra-Prediction in Video Coding. IEEE Trans. Image Process. 2018, 27, 3983–3997. [Google Scholar] [CrossRef]
- Abdoli, M.; Henry, F.; Brault, P.; Duhamel, P.; Dufaux, F. Short-Distance Intra Prediction of Screen Content in Versatile Video Coding (VVC). IEEE Signal Process. Lett. 2018, 25, 1690–1694. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Chien, W.; Karczewicz, M. Intra-Prediction Mode Propagation for Video Coding. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 110–121. [Google Scholar] [CrossRef]
- Bossen, F.; Boyce, J.; Li, X.; Seregin, V.; Shring, K. JVET common test conditions and software reference configurations for SDR video. In Proceedings of the Document JVET-N1010, 14th JVET Meeting, Geneva, Switzerland, 19–27 March 2019. [Google Scholar]
- Rosewarne, C.; Sharman, K.; Flynn, D. Common Test Conditions and Software Reference Configurations for HEVC Range Extensions; Standard JCTVC-P1006; ISO/IEC; ITU-T: San Jose, CA, USA, 2014. [Google Scholar]
- Bjϕntegaard, G. Document VCEG-M33: Calculation of Average PSNR Differences between RD-Curves. In Proceedings of the ITU-T VCEG Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
Category | Conditions |
---|---|
1 | |
2 | |
3 | |
4 | |
0 | None of above |
Class | Resolution | Sequence Name | Encoded Frames | Frame Rate |
---|---|---|---|---|
ClassB | 1920 × 1080 | BQTerrace | 120 | 60 fps |
1920 × 1080 | Cactus | 100 | 50 fps | |
1920 × 1080 | Kimono1 | 100 | 24 fps | |
ClassC | 832 × 480 | BasketballDrill | 100 | 50 fps |
832 × 480 | PartyScene | 100 | 50 fps | |
832 × 480 | BQMall | 120 | 60 fps | |
ClassD | 416 × 240 | BQSquare | 120 | 60 fps |
416 × 240 | BasketballPass | 100 | 50 fps | |
416 × 240 | BlowingBubbles | 100 | 50 fps | |
ClassE | 1280 × 720 | Fourpeople | 120 | 60 fps |
1280 × 720 | Johnny | 120 | 60 fps | |
1280 × 720 | KristenAndSara | 120 | 60 fps | |
ClassF | 1280 × 720 | SlideEditing | 100 | 30 fps |
1280 × 720 | SlideShow | 100 | 30 fps |
Codec | VTM5.0 |
---|---|
Configurations | All Intra (AI) Random Access (RA) Low delay with P picture (LP) Low delay with B picture (LB) |
Profile | Main |
GOPsize | 8 |
Quantization Parameter | 22, 27, 32, and 37 |
Deblock Filter | ON |
Adaptive Loop Filter | OFF |
Algorithm | Accuracy(%) |
---|---|
Intra-based EO [26] | 72.20 |
Sobel-based EO [27] | 76.30 |
Proposed | 79.06 |
Anchor(VTM5.0) SAO Disabled with 128 × 128 CTU | Y BD-Rate | ||
---|---|---|---|
All Intra (AI) | ClassB | 0.15% | 63.22% |
ClassC | 0.03% | 62.87% | |
ClassD | −0.04% | 63.01% | |
ClassE | 0.10% | 64.43% | |
ClassF | 0.77% | 64.87% | |
Random Access (RA) | ClassB | 0.44% | 61.68% |
ClassC | 0.11% | 64.44% | |
ClassD | 0.09% | 63.87% | |
ClassE | 0.22% | 67.20% | |
ClassF | 0.79% | 68.28% | |
Low Delay P (LP) | ClassB | 1.17% | 69.88% |
ClassC | 0.71% | 69.10% | |
ClassD | 0.36% | 68.72% | |
ClassE | 1.49% | 73.59% | |
ClassF | 1.05% | 76.01% | |
Low DelayB (LB) | ClassB | 0.77% | 69.54% |
ClassC | 0.48% | 68.99% | |
ClassD | 0.08% | 68.55% | |
ClassE | 0.52% | 72.48% | |
ClassF | 1.08% | 75.10% | |
Summary | AI | 0.20% | 63.68% |
RA | 0.33% | 65.09% | |
LP | 0.96% | 71.46% | |
LB | 0.59% | 70.93% | |
average | overall | 0.52% | 67.79% |
Anchor(VTM5.0) SAO Disabled with 128 × 128 CTU | Proposed | Sobel-Based EO [27] | Depth-Based EO [28] | Spatial Correlation-Based [30] | |||||
---|---|---|---|---|---|---|---|---|---|
Y BD-Rate | Y BD-Rate | Y BD-Rate | Y BD-Rate | ||||||
Sequence Class | ClassB | 0.15% | 63.22% | 0.12% | 50.76% | 0.07% | 10.40% | 0.12% | 38.41% |
ClassC | 0.03% | 62.87% | 0.02% | 53.43% | 0.05% | 2.90% | 0.06% | 51.47% | |
ClassD | −0.04% | 63.01% | 0.01% | 56.65% | 0.35% | 3.10% | 0.04% | 45.91% | |
ClassE | 0.10% | 64.43% | 0.11% | 52.42% | 0.12% | 14.80% | 0.15% | 50.55% | |
ClassF | 0.77% | 64.87% | 0.42% | 53.89% | 0.73% | 16.90% | 0.36% | 55.34% | |
average | overall | 0.20% | 63.68% | 0.14% | 53.43% | 0.26% | 9.62% | 0.15% | 48.34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Tang, L.; Tang, T. Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks. Sensors 2020, 20, 6754. https://doi.org/10.3390/s20236754
Wang R, Tang L, Tang T. Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks. Sensors. 2020; 20(23):6754. https://doi.org/10.3390/s20236754
Chicago/Turabian StyleWang, Ruyan, Liuwei Tang, and Tong Tang. 2020. "Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks" Sensors 20, no. 23: 6754. https://doi.org/10.3390/s20236754
APA StyleWang, R., Tang, L., & Tang, T. (2020). Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks. Sensors, 20(23), 6754. https://doi.org/10.3390/s20236754