Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs
Abstract
:1. Introduction
2. IR-UWB and FMCW Principle
2.1. IR-UWB Radar
- Due to the short impulse in the time-domain, the received signal has a large bandwidth. A bandpass filter is used over each row of the raw ADC data matrix , resulting in time-domain matrix , where denotes the fast-time samples in the range direction, and denotes the index of received frames in the slow-time dimension.
- In order to extract the human body signal from the raw data signal with background noise and stationary clutter, the recursive filter [20] is one of the MTI algorithms used for this situation. The MTI filter generates the clutter-suppressed signal by subtracting the estimated clutter from the received raw data signal.
- The range bin of the human body is determined for each row of by finding the maximum variance point within a slow-time slide window, and values for each frame are saved as . is the vital signs extracted from the raw data and consists of respiration and heart beat.
- Fast fourier transform (FFT) spectral analysis is applied to for respiration rate and heartbeat rate.
2.2. FMCW Radar
- Inverse fast fourier transform (IFFT) is performed over each row of the raw ADC data matrix . The result is the time-domain matrix , where denotes the fast-time samples in the range direction, and denotes the index of received frames in the slow-time dimension.
- The unwrapped the phase information of the vital signal is extracted, and the unwrapped phase signal is denoted as .
- FFT spectral analysis was applied to for respiration rate and heartbeat rate.
3. Experimental Setup
4. Experimental Results
4.1. Distance-Based Comparison
4.2. Carotid Pulse Detection Comparison
4.3. Harmonic Comparison
4.4. Obstacle Penetration Comparison
4.5. Orientation-Based Comparison
4.6. Anti-Interference Comparison
4.7. Heavy Clutter Measurement Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, M.; Veeraraghavan, A.; Sabharwal, A. DistancePPG: Robust Non-Contact Vital Signs Monitoring Using a Camera. Biomed. Opt. Express 2015, 6, 1565–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote Plethysmographic Imaging Using Ambient Light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [PubMed] [Green Version]
- Khan, F.; Ghaffar, A.; Khan, N.; Cho, S.H. An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver. Sensors 2020, 20, 2479. [Google Scholar] [CrossRef]
- Leem, S.K.; Khan, F.; Cho, S.H. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention. Sensors 2017, 17, 1240. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.D.; Lee, W.H.; Lee, Y.; Lee, H.J.; Cha, T.; Kim, S.H.; Song, K.M.; Lim, Y.H.; Cho, S.H.; Cho, S.H.; et al. Non-Contact Respiration Monitoring Using Impulse Radio Ultrawideband Radar in Neonates. R. Soc. Open Sci. 2019, 6, 190149. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, B.H.; Park, J.K.; Yook, J.G. A Novel Vital-Sign Sensing Algorithm for Multiple Subjects Based on 24-GHz FMCW Doppler Radar. Remote Sens. 2019, 11, 1237. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Nian, Y.; Gong, Y. Novel Signal Processing Method for Vital Sign Monitoring Using FMCW Radar. Biomed. Signal Process. Control 2017, 33, 335–345. [Google Scholar] [CrossRef]
- Schleicher, B.; Nasr, I.; Trasser, A.; Schumacher, H. IR-UWB Radar Demonstrator for Ultra-Fine Movement Detection and Vital-Sign Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2076–2085. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Deng, J.; Zhang, H.; Gulliver, T.A. Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs. Sci. Rep. 2018, 8, 13367. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lv, T.; Zhang, H.; Gao, Y.; Fang, G. Through-Wall Human Being Detection Using UWB Impulse Radar. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 46. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.; Abedi, H.; Shaker, G. Low-Cost Low-Power in-Vehicle Occupant Detection with Mm-Wave FMCW Radar. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Li, Y.P.; Hsu, W.C.; Lee, T.S. Design of an FMCW Radar Baseband Signal Processing System for Automotive Application. SpringerPlus 2016, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal, F. Phase-Coded FMCW Automotive Radar: System Design and Interference Mitigation. IEEE Trans. Veh. Technol. 2020, 69, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Vovnoboy, J.; Levinger, R.; Mazor, N.; Elad, D. A Dual-Loop Synthesizer With Fast Frequency Modulation Ability for 77/79 GHz FMCW Automotive Radar Applications. IEEE J. Solid State Circuits 2018, 53, 1328–1337. [Google Scholar] [CrossRef]
- Yang, X.; Yin, W.; Li, L.; Zhang, L. Dense People Counting Using IR-UWB Radar With a Hybrid Feature Extraction Method. IEEE Geosci. Remote Sens. Lett. 2019, 16, 30–34. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Ye, S.; Fang, G.; Aaron Gulliver, T. Improved Denoising Method for Through-Wall Vital Sign Detection Using UWB Impulse Radar. Digit. Signal Process. 2018, 74, 72–93. [Google Scholar] [CrossRef]
- Rana, S.P.; Dey, M.; Ghavami, M.; Dudley, S. Signature Inspired Home Environments Monitoring System Using IR-UWB Technology. Sensors 2019, 19, 385. [Google Scholar] [CrossRef] [Green Version]
- Lazaro, A.; Girbau, D.; Villarino, R. Analysis of Vital Signs Monitoring Using an Ir-uwb Radar. Prog. Electromagn. Res. 2010, 100, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, Y.; Ma, Y.; Liang, F.; An, Q.; Xue, H.; Yu, X.; Lv, H.; Wang, J. Method for Distinguishing Humans and Animals in Vital Signs Monitoring Using IR-UWB Radar. Int. J. Environ. Res. Public Health 2019, 16, 4462. [Google Scholar] [CrossRef] [Green Version]
- Lazaro, A.; Girbau, D.; Villarino, R. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars. Sensors 2014, 14, 2595–2618. [Google Scholar] [CrossRef]
- Sacco, G.; Piuzzi, E.; Pittella, E.; Pisa, S. An FMCW Radar for Localization and Vital Signs Measurement for Different Chest Orientations. Sensors 2020, 20, 3489. [Google Scholar] [CrossRef]
- Ahmad, A.; Roh, J.C.; Wang, D.; Dubey, A. Vital Signs Monitoring of Multiple People Using a FMCW Millimeter-Wave Sensor. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1450–1455. [Google Scholar] [CrossRef]
- Lees, M. Digital Beamforming Calibration for FMCW Radar. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 281–284. [Google Scholar] [CrossRef]
- Fuchs, J.; Ward, K.; Tulin, M.; York, R. Simple Techniques to Correct for VCO Nonlinearities in Short Range FMCW Radars. In Proceedings of the 1996 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 17–21 June 1996; Volume 2, pp. 1175–1178. [Google Scholar] [CrossRef]
- Orth, A.; Kwiatkowski, P.; Pohl, N. A Novel Approach for a MIMO FMCW Radar System with Frequency Steered Antennas for 3D Target Localization. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; pp. 37–40. [Google Scholar]
- Ren, L.; Kong, L.; Foroughian, F.; Wang, H.; Theilmann, P.; Fathy, A.E. Comparison Study of Noncontact Vital Signs Detection Using a Doppler Stepped-Frequency Continuous-Wave Radar and Camera-Based Imaging Photoplethysmography. IEEE Trans. Microw. Theory Tech. 2017, 65, 3519–3529. [Google Scholar] [CrossRef]
- Richards, M.A.; Scheer, J.A.; Holm, W.A. (Eds.) Principles of Modern Radar. Vol.1: Basic Principles, 1st ed.; SciTech Publ.: Raleigh, NC, USA, 2015. [Google Scholar]
- Alizadeh, M.; Shaker, G.; Almeida, J.C.M.D.; Morita, P.P.; Safavi-Naeini, S. Remote Monitoring of Human Vital Signs Using Mm-Wave FMCW Radar. IEEE Access 2019, 7, 54958–54968. [Google Scholar] [CrossRef]
- Mérelle, V.; Gaugue, A.; Louis, G.; Ménard, M. UWB Pulse Radar for Micro-Motion Detection. In Proceedings of the 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odessa, Ukraine, 5–11 September 2016; pp. 152–155. [Google Scholar] [CrossRef]
- Shi, K.; Schellenberger, S.; Steigleder, T.; Michler, F.; Lurz, F.; Weigel, R.; Koelpin, A. Contactless Carotid Pulse Measurement Using Continuous Wave Radar. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 569–571. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, Y.; Choi, Y.W.; Heo, R.; Park, H.K.; Cho, S.H.; Cho, S.H.; Lim, Y.H. Preclinical Evaluation of a Noncontact Simultaneous Monitoring Method for Respiration and Carotid Pulsation Using Impulse-Radio Ultra-Wideband Radar. Sci. Rep. 2019, 9, 11892. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.; Ash, M.; Chen, Q.; Chetty, K. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis. Sensors 2016, 16, 1401. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, A.K.I.U.W. Contactless Estimation of Breathing Rate Using UWB Radar. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2017. [Google Scholar] [CrossRef]
- Gu, C. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors 2016, 16, 1169. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Peng, Z.; Huang, T.Y.; Fan, T.; Wang, F.K.; Horng, T.S.; Muñoz-Ferreras, J.M.; Gómez-García, R.; Ran, L.; Lin, J. A Review on Recent Progress of Portable Short-Range Noncontact Microwave Radar Systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1692–1706. [Google Scholar] [CrossRef]
- Pisa, S.; Pittella, E.; Piuzzi, E. A Survey of Radar Systems for Medical Applications. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 64–81. [Google Scholar] [CrossRef]
- De Groote, A.; Wantier, M.; Cheron, G.; Estenne, M.; Paiva, M. Chest Wall Motion during Tidal Breathing. J. Appl. Physiol. 1997, 83, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Petrović, V.L.; Janković, M.M.; Lupšić, A.V.; Mihajlović, V.R.; Popović-Božović, J.S. High-Accuracy Real-Time Monitoring of Heart Rate Variability Using 24 GHz Continuous-Wave Doppler Radar. IEEE Access 2019, 7, 74721–74733. [Google Scholar] [CrossRef]
- Goppelt, M.; Blöcher, H.L.; Menzel, W. Analytical Investigation of Mutual Interference between Automotive FMCW Radar Sensors. In Proceedings of the 2011 German Microwave Conference, Darmstadt, Germany, 14–16 March 2011; pp. 1–4. [Google Scholar]
- Aydogdu, C.; Garcia, N.; Hammarstrand, L.; Wymeersch, H. Radar Communications for Combating Mutual Interference of FMCW Radars. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Nathanson, F.E.; O’Reilly, P.J.; Cohen, M.N. Radar Design Principles: Signal Processing and the Environment; Scitech Publ.: Raleigh, NC, USA, 2004. [Google Scholar]
IR-UWB System Parameters | Value |
---|---|
IR-UWB chipset | Novelda X4 |
Center frequency | 8.7 GHz |
Bandwidth (−10 dB) | 1.5 GHz |
ADC sampling rate | 23.328 GHz |
Peak pulse output power | 6.3 dBm |
Pulse repetition frequency | 40.5 MHz |
Slow-time sampling frequency | 20 FPS |
FMCW System Parameters | Value |
---|---|
FMCW chipset | TI IWR6843ISK |
Starting frequency | 60 GHz |
Sweep bandwidth | 1.5 GHz |
ADC sampling rate | 5.5 MHz |
Transmitter output power | 12 dBm |
Chirp slope | 32.251 MHz/us |
Slow-time sampling frequency | 20 FPS |
Indoor Open Space | Heavy Clutter | Double Brick | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean () | Std () | (dB) | Mean () | Std () | (dB) | Mean () | Std () | (dB) | ||
IR-UWB | Noise | 0.0031 | 0.0017 | 21.0 | 0.0061 | 0.0029 | 18.48 | 0.0029 | 0.0018 | 21.50 |
Target | 0.39 | 0.19 | 0.43 | 0.20 | 0.41 | 0.18 | ||||
FMCW | Noise | 0.0046 | 0.0024 | 18.0 | 0.0062 | 0.0036 | 17.26 | 0.067 | 0.034 | 10.56 |
Target | 0.29 | 0.17 | 0.33 | 0.16 | 0.33 | 0.20 |
0.5 m | 1.5 m | 2.5 m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | ||
RR | IR-UWB | 11.73 | 97.6 | 7.34 | 11.73 | 100.1 | 5.44 | 11.14 | 97.5 | 4.4 |
FMCW | 12.32 | 102.5 | 6.8 | 11.14 | 95.1 | 6.75 | 11.73 | 102.6 | 6.1 | |
Belt | 12.02 | 11.72 | 11.43 | |||||||
HR | IR-UWB | 76.83 | 101.1 | −3.37 | 77.42 | 99.5 | −5.15 | 77.42 | 101.7 | −5.59 |
FMCW | 76.83 | 101.1 | −5.47 | 79.77 | 102.5 | −6.1 | 77.42 | 101.7 | −6.88 | |
ECG | 76.0 | 77.83 | 76.0 |
HR | Ratio (%) | SNR (dB) | |
---|---|---|---|
IR-UWB | 70.38 | 99.8 | −2.80 |
FMCW | 69.79 | 99.0 | −1.63 |
ECG | 70.5 |
RR | Ratio (%) | SNR (dB) | |
---|---|---|---|
IR-UWB | 14.66 | 98.1 | 11.01 |
FMCW-RX1 | 14.66 | 98.1 | 7.43 |
FMCW-SIMO (sum) | 14.66 | 98.1 | 7.70 |
FMCW-SIMO (SNR) | 14.66 | 98.1 | 7.91 |
Belt | 14.95 |
HR | Ratio (%) | SNR (dB) | |
---|---|---|---|
IR-UWB | 71.55 | 98.9 | −3.74 |
FMCW-RX1 | 70.38 | 97.9 | −5.18 |
FMCW-SIMO (sum) | 70.79 | 98.1 | −3.80 |
FMCW-SIMO (SNR) | 71.55 | 98.9 | −3.30 |
ECG | 72.34 |
Single Gypsum Board | Double Gypsum Board | Triple Gypsum Board | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | ||
RR | IR-UWB | 13.49 | 100.1 | 8.17 | 12.32 | 100.1 | 10.5 | 12.32 | 107.8 | 7.48 |
FMCW | 13.49 | 100.1 | 8.12 | 12.9 | 104.8 | 5.32 | 12.32 | 107.8 | 8.37 | |
Belt | 13.48 | 12.31 | 11.43 | |||||||
HR | IR-UWB | 75.66 | 99.6 | −0.78 | 76.83 | 99.9 | −5.45 | 77.42 | 97.2 | −3.96 |
FMCW | 76.25 | 100.3 | −3.47 | 81.52 | 106.0 | −5.91 | 78.59 | 98.6 | −4.05 | |
ECG | 76.0 | 76.91 | 79.66 |
Single Brick | Double Brick | Triple Brick | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | ||
RR | IR-UWB | 11.14 | 97.5 | 7.40 | 12.32 | 100.1 | 9.06 | 12.32 | 100.1 | 3.57 |
FMCW | 11.14 | 97.5 | 4.83 | 11.73 | 95.3 | 7.46 | 11.73 | 95.3 | 2.44 | |
Belt | 11.43 | 12.31 | 12.31 | |||||||
HR | IR-UWB | 73.9 | 97.2 | −3.85 | 72.14 | 98.5 | −5.42 | 70.97 | 93.4 | −5.78 |
FMCW | 74.49 | 98.0 | −3.70 | 69.79 | 95.3 | −5.18 | 70.38 | 92.6 | −7.26 | |
ECG | 76.0 | 73.25 | 76.0 |
RMSE | Front | Left (90) | Right (90) | Back | |
---|---|---|---|---|---|
RR | IR-UWB | 1.0 | 1.3 | 1.2 | 3.3 |
FMCW | 1.1 | 1.5 | 1.7 | 3.1 | |
HR | IR-UWB | 3.9 | 3.8 | 4.2 | 3.9 |
FMCW | 3.8 | 4.0 | 4.4 | 4.17 |
FMCW | Without Interference | With Interference | ||||
---|---|---|---|---|---|---|
Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | |
RR | 12.32 | 97.8 | 8.21 | 12.32 | 97.8 | 6.27 |
Belt | 12.6 | 12.6 | ||||
HR | 79.77 | 100.1 | −5.07 | 90.91 | 104.5 | −4.87 |
ECG | 79.66 | 86.99 |
IR-UWB | Without Interference | With Interference | ||||
---|---|---|---|---|---|---|
Value | Ratio (%) | SNR (dB) | Value | Ratio (%) | SNR (dB) | |
RR | 12.9 | 100 | 7.02 | 12.32 | 100.1 | 7.08 |
Belt | 12.9 | 12.31 | ||||
HR | 92.08 | 101.2 | −4.65 | 92.08 | 101.6 | −5.92 |
ECG | 91 | 90.65 |
Value | Ratio (%) | SNR (dB) | ||
---|---|---|---|---|
RR | IR-UWB | 12.9 | 100 | 9.50 |
FMCW | 12.9 | 100 | 6.74 | |
Belt | 12.9 | |||
HR | IR-UWB | 83.28 | 98.9 | −4.71 |
FMCW | 83.28 | 98.9 | −6.21 | |
ECG | 84.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yoo, S.; Cho, S.H. Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs. Sensors 2020, 20, 6695. https://doi.org/10.3390/s20226695
Wang D, Yoo S, Cho SH. Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs. Sensors. 2020; 20(22):6695. https://doi.org/10.3390/s20226695
Chicago/Turabian StyleWang, Dingyang, Sungwon Yoo, and Sung Ho Cho. 2020. "Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs" Sensors 20, no. 22: 6695. https://doi.org/10.3390/s20226695