Vital Signs Prediction and Early Warning Score Calculation Based on Continuous Monitoring of Hospitalised Patients Using Wearable Technology
Abstract
1. Introduction
2. Data Generation
2.1. Study Design
2.2. Study Population
2.3. Measuring Device
- Accelerometer (x, y and z-axis) (m/s) capable of detecting motion and the position of the body
- Pulse oximeter to measure the oxygen saturation (%)
- Photoplethysmograph (PPG) which is used in combination with the ECG to derive cuff-less, noninvasive blood pressure using pulse transit time (PTT) technique.
- 3-channel ECG from which the heart rate and respiration rate can be derived.
- Intercostal electromyography (EMG) electrodes to estimate the respiration based on muscle movement.
3. Methods
3.1. High-Rate EWS Computation
3.2. Vital Signs Time-Series Prediction
3.3. Local Learning of SVMs
3.3.1. Support Vector Machines
3.3.2. KNN-LS-SVM Regressor
- Given a test example , compute distances to all training examples and pick the nearest K neighbours;
- Train the LS-SVM model with the K nearest neighbours.
- Use the resulting regressor to estimate the output of .
3.3.3. Prediction-Approach Design
4. Results
4.1. High-Rate EWS Computation
4.2. Vital Signs Time-Series Prediction
4.2.1. Cardiology and Postsurgical Patients
4.2.2. Dialysis Patients
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brekke, I.J.; Puntervoll, L.H.; Pedersen, P.B.; Kellett, J.; Brabr, M. The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Kause, J.; Smith, G.; Prytherch, D.; Parr, M.; Flabouris, A.; Hillman, K. A comparison of Antecedents to Cardiac Arrests, Deaths and EMergency Intensive care Admissions in Australia and New Zealand, and the United Kingdom—The ACADEMIA study. Resuscitation 2004, 62, 275–282. [Google Scholar] [CrossRef]
- Buist, M.; Bernard, S.; Nguyen, T.V.; Moore, G.; Anderson, J. Association between clinically abnormal observations and subsequent in-hospital mortality: A prospective study. Resuscitation 2004, 62, 137–141. [Google Scholar] [CrossRef]
- Hillman, K.M.; Bristow, P.J.; Chey, T.; Daffurn, K.; Jacques, T.; Norman, S.L.; Bishop, G.F.; Simmons, G. Antecedents to hospital deaths. Intern. Med. J. 2001, 31, 343–348. [Google Scholar] [CrossRef]
- Henriksen, D.P.; Brabr, M.; Lassen, A.T. Prognosis and risk factors for deterioration in patients admitted to a medical emergency department. PLoS ONE 2014, 9, e94649. [Google Scholar] [CrossRef]
- Barfod, C.; Lauritzen, M.M.P.; Danker, J.K.; Sölétormos, G.; Forberg, J.L.; Berlac, P.A.; Lippert, F.; Lundstrøm, L.H.; Antonsen, K.; Lange, K.H.W. Abnormal vital signs are strong predictors for intensive care unit admission and in-hospital mortality in adults triaged in the emergency department—A prospective cohort study. Scand. Trauma Resusc. Emerg. Med. 2012, 10, 20–28. [Google Scholar] [CrossRef]
- Javanbakht, M.; Mashayekhi, A.; Trevor, M.; Hemami, M.R.; Downey, C.L.; Branagan-Harris, M.; Atkinson, J. Cost utility analysis of continuous and intermittent versus intermittent vital signs monitoring in patients admitted to surgical wards. J. Med. Econ. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Lim, W.; Balakrishnan, T. Early warning score validation methodologies and performance metrics: A systematic review. BMC Med. Inform. Decis. Mak. 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.A.; Kristian, A.; Larsn, S.R. Frequency of early warning score assessment and clinical deterioration in hospitalized patients: A randomized trial. Resuscitation 2016, 101, 43191–43196. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.L.; Chapman, S.; Randell, R.; Brown, J.M.; Jayne, D.G. The impact of continuous versus intermittent vital signs monitoring in hospitals: A systematic review and narrative synthesis. Int. J. Nurs. Stud. 2018, 84, 19–27. [Google Scholar] [CrossRef]
- Reyna, M.A.; Josef, C.S.; Jeter, R.; Shashikumar, S.P.; Westover, M.B.; Nemati, S.; Clifford, G.D.; Sharma, A. Early prediction of sepsis from clinical data: The PhysioNet/Computing in Cardiology Challenge 2019. Crit. Care Med. 2019, 48, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.Y.A.; Vranken, J.; Wouters, F.; Mesotten, D.; Vandervoort, P.; Storms, V.; Luca, S.; Vanrumste, B.; Aerts, J.-M. Feature Engineering for ICU Mortality Prediction Based on Hourly to Bi-Hourly Measurements. Appl. Sci. 2019, 9, 3525. [Google Scholar] [CrossRef]
- Liu, S.; Yao, J.; Motani, M. Early Prediction of Vital Signs Using Generative Boosting via LSTM Networks. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 437–444. [Google Scholar]
- Amer, A.Y.A.; Aerts, J.M.; Vanrumste, B.; Luca, S. A Localised Learning Approach Applied to Human Activity Recognition. IEEE Intell. Syst. 2020, 99, 1. [Google Scholar]
- Amer, A.Y.A. Localised Least Squares Support Vector Machines with Appli-Cation to Weather Forecasting. Master’s Thesis, KU Leuven, Leuven, Belgium, 2016. [Google Scholar]
- Zifang, H.; Shyu, M.-L. k-NN based LS-SVM framework for long-term time series prediction. In Proceedings of the IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA, 4–6 August 2010. [Google Scholar]
- Zifang, H.; Shyu, M.-L. Long-term time series prediction using k-NN based LS-SVM framework with multi-value integration. In Recent Trends in Information Reuse and Integration; Springer: Vienna, Austria, 2012; pp. 191–209. [Google Scholar]
- Bottou, L.; Vapnik, V. Local Learning Algorithms. Neural Comput. 1992, 4, 888–900. [Google Scholar] [CrossRef]
- Moon, A.; Cosgrove, J.F.; Lea, D.; Fairs, A.; Cressey, D.M. An eight year audit before and after the introduction of modified early warning score (MEWS) charts, of patients admitted to a tertiary referral intensive care unit after CPR. Resuscitation 2011, 82, 150–154. [Google Scholar] [CrossRef]
- Jarvis, S.; Kovacs, C.; Briggs, J.S.; Meredith, P.; Schmidt, P.E.; Featherstone, P.I.; Prytherch, D.R.; Smith, G.B. Aggregate National Early Warning Score (NEWS) values are more important than high scores for a single vital signs parameter for discriminating the risk of adverse outcomes. Resuscitation 2015, 87, 75–80. [Google Scholar] [CrossRef]
- Gao, H.; McDonnell, A.; Harrison, D.A.; Moore, T.; Adam, S.; Daly, K.; Esmonde, L.; Goldhill, D.R.; Parry, G.J.; Rashidian, A.; et al. Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the ward. Intensive Care Med. 2007, 33, 667–679. [Google Scholar] [CrossRef]
- Subbe, C.P.; Duller, B.; Bellomo, R. Effect of an automated notification system for deteriorating ward patients on clinical outcomes. Crit. Care 2017, 21, 52. [Google Scholar] [CrossRef]
- Smith, M.B.; Chiovaro, J.C.; O’Neil, M.; Kansagara, D.; Quiñones, A.R.; Freeman, M.; Motu’Apuaka, M.L.; Slatore, C.G. Early warning system scores for clinical deterioration in hospitalized patients: A systematic review. Ann. Am. Thorac. Soc. 2014, 11, 1454–1465. [Google Scholar] [CrossRef]
- Smith, M.E.B.; Chiovaro, J.C.; O’Neil, M.; Kansagara, D.; Quinones, A.; Freeman, M.; Motu’Apuaka, M.; Slatore, C.G. Early Warning System Scores: A Systematic Review. In VA Evidence-Based Synthesis Program Reports; Department of Veterans Affairs (US): Washington, DC, USA, 2014. [Google Scholar]
- Youssef, A.; Amer, A.Y.A.; Caballero, N.; Aerts, J.M. Towards Online Personalized-Monitoring of Human Thermal Sensation Using Machine Learning Approach. Appl. Sci. 2019, 9, 3303. [Google Scholar] [CrossRef]
- Cheng, H.; Tan, P.-N.; Jin, R. Localized support vector machine and its efficient algorithm. In Proceedings of the SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007. [Google Scholar]
- Bischl, B.; Schiffner, J.; Weihs, C. Benchmarking local classiffication methods. Comput. Stat. 2013, 28, 2599–2619. [Google Scholar] [CrossRef]
- Cheng, H.; Tan, P.; Jin, R. Efficient algorithm for localized support vector machine. IEEE Trans. Knowl. Data Eng. 2010, 22, 537–549. [Google Scholar] [CrossRef]
- Yang, H.; Huang, K.; King, I.; Lyu, M.R. Localized support vector regression for time series prediction. Neurocomputing 2009, 72, 10–12. [Google Scholar] [CrossRef]
- Karevan, Z.; Feng, Y.; Suykens, J. Moving least squares support vector machines for weather temperature prediction. In Proceedings of the European Symposium on Artificial Neural Networks, Bruges, Belgium, 26–28 April 2017. [Google Scholar]
- Berg, A.; Maire, M.; Malik, J. SVM-KNN: Discriminative Nearest Neighbor Classiffcation for Visual Category Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 7–22 June 2006; pp. 2126–2136. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Cayton, L. Fast nearest neighbor retrieval for bregman divergences. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 112–119, ISBN 9781605582054. [Google Scholar] [CrossRef]
- Saeed, M.; Villarroel, M.; Reisner, A.T.; Clifford, G.; Lehman, L.W.; Moody, G.; Heldt, T.; Kyaw, T.H.; Moody, B.; Mark, R.G. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Crit. Care Med. 2011, 39, 952–960. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Li-Wei, H.L.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Lehman, L.-W.H.; Adams, R.P.; Mayaud, L.; Moody, G.B.; Malhotra, A.; Mark, R.G.; Nemati, S. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J. Biomed. Health Inform. 2015, 19, 1068–1076. [Google Scholar] [CrossRef]
- Reyes-García, J.; Galeana-Zapién, H.; Galaviz-Mosqueda, A.; Torres-Huitzil, A. Evaluation of the Impact of Data Uncertainty on the Prediction of Physiological Patient Deterioration. IEEE Access 2018, 6, 38595–38606. [Google Scholar] [CrossRef]
- Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Watkinson, P.J.; Tarassenko, L. Modelling physiological deterioration in post-surgical patient vital-sign data. Med. Biol. Eng. Comput. 2013, 51, 869–877. [Google Scholar] [CrossRef]
- Clifton, L.; Clifton, D.A.; Watkinson, P.J.; Tarassenko, L. Identification of patient deterioration in vital-sign data using one-class support vector machines. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 125–131. [Google Scholar]
- Clifton, L.; Clifton, D.A.; Zhang, Y.; Watkinson, P.; Tarassenko, L.; Yin, H. Probabilistic novelty detection with support vector machines. IEEE Trans. Rel. 2014, 63, 455–467. [Google Scholar] [CrossRef]
- Luca, S.E.; Pimentel, M.A.F.; Watkinson, P.J.; Clifton, D.A. Point process models for novelty detection on spatial point patterns and their extremes. Comput. Stat. Data Anal. 2018, 125, 86–103. [Google Scholar] [CrossRef]
- Da Silva, D.B.; Schimidt, D.; DaCosta, C.A.; DaRosa, R.R.; Eskofier, B. DeepSigns: A predictive model based on Deep Learning for the early detection of patient health deterioration. Expert Syst. Appl. 2020, 165, 113905. [Google Scholar] [CrossRef]
SCORE | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
Temperature (C) | <35.1 | 35.1–36.5 | 36.6–37.5 | >37.5 | |||
Heart Rate (BPM) | <40 | 40–50 | 51–100 | 101–110 | 111–130 | >130 | |
Respiration Rate (BPM) | <9 | 9–14 | 15–20 | 21–30 | >30 | ||
Oxygen Saturation (%) | <91 | 91–93 | 94–95 | >95 | |||
Systolic Blood Pressure (mmHg) | <70 | 70–80 | 81–100 | 101–180 | 180–200 | >200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef Ali Amer, A.; Wouters, F.; Vranken, J.; de Korte-de Boer, D.; Smit-Fun, V.; Duflot, P.; Beaupain, M.-H.; Vandervoort, P.; Luca, S.; Aerts, J.-M.; et al. Vital Signs Prediction and Early Warning Score Calculation Based on Continuous Monitoring of Hospitalised Patients Using Wearable Technology. Sensors 2020, 20, 6593. https://doi.org/10.3390/s20226593
Youssef Ali Amer A, Wouters F, Vranken J, de Korte-de Boer D, Smit-Fun V, Duflot P, Beaupain M-H, Vandervoort P, Luca S, Aerts J-M, et al. Vital Signs Prediction and Early Warning Score Calculation Based on Continuous Monitoring of Hospitalised Patients Using Wearable Technology. Sensors. 2020; 20(22):6593. https://doi.org/10.3390/s20226593
Chicago/Turabian StyleYoussef Ali Amer, Ahmed, Femke Wouters, Julie Vranken, Dianne de Korte-de Boer, Valérie Smit-Fun, Patrick Duflot, Marie-Hélène Beaupain, Pieter Vandervoort, Stijn Luca, Jean-Marie Aerts, and et al. 2020. "Vital Signs Prediction and Early Warning Score Calculation Based on Continuous Monitoring of Hospitalised Patients Using Wearable Technology" Sensors 20, no. 22: 6593. https://doi.org/10.3390/s20226593
APA StyleYoussef Ali Amer, A., Wouters, F., Vranken, J., de Korte-de Boer, D., Smit-Fun, V., Duflot, P., Beaupain, M.-H., Vandervoort, P., Luca, S., Aerts, J.-M., & Vanrumste, B. (2020). Vital Signs Prediction and Early Warning Score Calculation Based on Continuous Monitoring of Hospitalised Patients Using Wearable Technology. Sensors, 20(22), 6593. https://doi.org/10.3390/s20226593