Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems
Abstract
1. Introduction
2. Experimental Setup
3. Results and Analysis
3.1. Key Generation without Phase Filter
3.2. Security against Man-In-The-Middle Attack
3.3. Key Generation with Phase Filter
3.4. Analysis of Information Leakage
3.5. Description of the Protocol
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stinson, D.R. Cryptography Theory and Practice, 4th ed.; Chapman & Hall: London, UK, 2019; pp. 1–13. [Google Scholar]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Compt. 1997, 26, 1484–1509. [Google Scholar] [CrossRef]
- Steane, A. Quantum computing. Rep. Prog. Phys. 1998, 61, 117–173. [Google Scholar] [CrossRef]
- Mavroeidis, V.; Vishi, K.; Zych, M.D.; Jøsang, A. The impact of quantum computing on present cryptography. Int. J. Adv. Comp. Sci. Appl. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Mosca, M. Cybersecurity in an era with quantum computers: Will we be ready? IEEE Secur. Priv. 2018, 16, 38–41. [Google Scholar] [CrossRef]
- Kapov, N.S.; Furdek, M.; Zsigmond, S.; Wosinska, L. Physical-layer security in evolving optical networks. IEEE Commun. Mag. 2016, 54, 110–117. [Google Scholar] [CrossRef]
- Wand, T.L.; Gariano, J.A.; Djordjevic, I.B. Employing Bessel-Gaussian beams to improve physical-layer security in free-space optical communications. IEEE Photonics J. 2018, 10, 7907113. [Google Scholar]
- Tanizawa, K.; Futami, F. Single-channel 48-Gbit/s DP PSK Y-00 quantum stream cipher transmission over 400-and 800-km SSMF. Opt. Express 2019, 27, 25357–25363. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2014, 8, 596–604. [Google Scholar] [CrossRef]
- Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Grosshans, F.; Assche, G.V.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Kravtsov, K.; Wang, Z.; Trappe, W.; Prucnal, P.R. Physical layer secret key generation for fiber-optical networks. Opt. Express 2013, 21, 23756–23771. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Tait, A.N.; Chang, M.P.; Prucnal, P.R. WDM optical steganography based on amplified spontaneous emission noise. Opt. Lett. 2014, 39, 5925–5928. [Google Scholar] [CrossRef] [PubMed]
- Minar, J.; Riedmatten, H.; Simon, C.; Zbinden, H.; Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 2008, 77, 052325. [Google Scholar] [CrossRef]
- Wanser, K.H. Fundamental phase noise limit in optical fibers due to temperature fluctuations. Electron. Lett. 1992, 28, 53–54. [Google Scholar] [CrossRef]
- Wu, B.; Huang, Y.K.; Zhang, S.; Shastri, B.J.; Prucnal, P.R. Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities. In Proceedings of the CLEO Conference, OSA, San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Liao, Y.; Wang, J.; Wang, S.; Yang, H.; Wang, X. Spectral characteristics of the microfiber MZ interferometer with a knot resonator. Opt. Commun. 2017, 389, 253–357. [Google Scholar] [CrossRef]
- He, W.; Zhu, L.; Dong, M.; Lou, X.; Luo, F. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach–Zehnder interferometer and tunable filter. Laser Phys. 2018, 28, 045104. [Google Scholar] [CrossRef]
- 100G CI-BCH-3 eFEC Technology. Available online: www.microsemi.com (accessed on 5 September 2020).
- Bocherer, G.; Schulte, P.; Steiner, F. Probabilistic shaping and forward error correction for fiber-optic communication systems. J. Lightwave Technol. 2019, 37, 230–244. [Google Scholar] [CrossRef]
- Brassard, G.; Salvail, L. Secret-Key Reconciliation by Public Discussion. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques EUROCRYPT 1993, Lofthus, Norway, 23–27 May 1993; pp. 410–423. [Google Scholar]
- Wu, B.; Shastri, B.J.; Prucnal, P.R. System performance measurement and analysis of optical steganography based on noise. IEEE Photonic Technol. Lett. 2014, 26, 1920–2923. [Google Scholar] [CrossRef]
Description | Percentage |
---|---|
Dropped samples | 54% |
Accepted samples | 46% |
Key error | 0.5% |
Correct key | 99.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Huang, Y.-K. Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems. Sensors 2020, 20, 6296. https://doi.org/10.3390/s20216296
Wu B, Huang Y-K. Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems. Sensors. 2020; 20(21):6296. https://doi.org/10.3390/s20216296
Chicago/Turabian StyleWu, Ben, and Yue-Kai Huang. 2020. "Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems" Sensors 20, no. 21: 6296. https://doi.org/10.3390/s20216296
APA StyleWu, B., & Huang, Y.-K. (2020). Optical-Amplifier-Compatible Long-Distance Secure Key Generation Based on Random Phase Fluctuations for WDM Systems. Sensors, 20(21), 6296. https://doi.org/10.3390/s20216296