Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication
Abstract
:1. Introduction
2. Background
3. Proposed Architecture
3.1. Personal Identification Data Protection Using Random Data Inversion-Based SHA1-CRC
3.2. Transmitter Design
3.3. Receiver Design
3.3.1. Carrier Frequency Extraction Using Edge Detection Algorithm
Algorithm 1: Edge detection algorithm. |
|
3.3.2. Adaptive Threshold Technique for Edge Detection Algorithm
3.3.3. One-Bit Error Correction
3.3.4. Received Data Judgment
Algorithm 2: Binary data judgment algorithm. |
|
4. Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RF | Radio Frequency |
MCU | Micro Controller Unit |
FSK | Frequency Shift Keying |
SHA1 | Secure Hash Algorithm 1 |
GPIO | Gneral Purpose Input Output |
CRC | Cyclic Redundancy Check |
DMA | Direct Memory Acess |
UART | Universal Asynchronous Receiver Transmitter |
ARQ | Automatic Repeat reQuest |
References
- Tomlinson, W.J.; Abarca, F.; Chowdhury, K.R.; Stojanovic, M.; Yu, C. Experimental assessment of human-body-like tissue as a communication channel for galvanic coupling. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–6. [Google Scholar]
- Chen, C.L.; Huang, P.T.; Deng, Y.Y.; Chen, H.C.; Wang, Y.C. A secure electronic medical record authorization system for smart device application in cloud computing environments. Hum.-Centric Comput. Inf. Sci. 2020, 10, 1–31. [Google Scholar] [CrossRef]
- Meng, Y.; Yi, S.H.; Kim, H.C. Health and wellness monitoring using intelligent sensing technique. J. Inf. Process. Syst. 2019, 15, 478–491. [Google Scholar]
- Lee, S.; Park, D.; Park, K.H. Qrs complex detection based on primitive. J. Commun. Netw. 2017, 19, 442–450. [Google Scholar] [CrossRef]
- How the Next Evolution of the Internet Is Changing Everything. Available online: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed on 1 January 2005).
- Megouache, L.; Zitouni, A.; Djoudi, M. Ensuring user authentication and data integrity in multi-cloud environment. Hum.-Centric Comput. Inf. Sci. 2020, 10, 1–20. [Google Scholar] [CrossRef]
- Mohammadi, V.; Rahmani, A.M.; Darwesh, A.M.; Sahafi, A. Trust-based recommendation systems in Internet of Things: A systematic literature review. Hum.-Centric Comput. Inf. Sci. 2019, 9, 21. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Park, J.H. IoT and Smart City Technology: Challenges, Opportunities, and Solutions. JIPS 2019, 15, 233–238. [Google Scholar]
- Lee, D.; Moon, H.; Oh, S.; Park, D. mIoT: Metamorphic IoT Platform for On-Demand Hardware Replacement in Large-Scaled IoT Applications. Sensors 2020, 20, 3337. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, Y.; Kwak, J.; Park, D.; Park, K.H. Advanced Real-Time Dynamic Programming in the Polygonal Approximation of ECG Signals for a Lightweight Embedded Device. IEEE Access 2019, 7, 162850–162861. [Google Scholar] [CrossRef]
- Park, D.; Jung, M.; Cho, J. Area efficient remote code execution platform with on-demand instruction manager for cloud-connected code executable IoT devices. Simul. Model. Pract. Theory 2017, 77, 379–389. [Google Scholar] [CrossRef]
- Zimmerman, T.G. Personal Area Networks: Near-field intrabody communication. IBM Syst. J. 1996, 35, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhu, H.; Yuan, J. Characterization and analysis of intra-body communication channel. In Proceedings of the 2009 IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar]
- Zhu, X.; Guo, Y.; Wu, W. Investigation and Modeling of Capacitive Human Body Communication. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 474–482. [Google Scholar] [CrossRef]
- Park, J.; Garudadri, H.; Mercier, P.P. Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems. IEEE Trans. Biomed. Eng. 2017, 64, 452–462. [Google Scholar]
- Ma, C.; Huang, Z.; Wang, Z.; Zhou, L.; Li, Y. An energy efficient technique using electric active shielding for capacitive coupling intra-body communication. Sensors 2017, 17, 2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, S.; He, M.; Nath, M.; Das, D.; Chatterjee, B.; Sen, S. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication. IEEE Trans. Biomed. Eng. 2019, 66, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Shinagawa, M.; Fukumoto, M.; Ochiai, K.; Kyuragi, H. A near-field-sensing transceiver for intrabody communication based on the electrooptic effect. IEEE Trans. Instrum. Meas. 2004, 53, 1533–1538. [Google Scholar] [CrossRef]
- Song, S.; Cho, N.; Yoo, H. A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications. IEEE J. Solid-State Circuits 2007, 42, 2021–2033. [Google Scholar] [CrossRef]
- Hachisuka, K.; Nakata, A.; Takeda, T.; Terauchi, Y.; Shiba, K.; Sasaki, K.; Hosaka, H.; Itao, K. Development and performance analysis of an intra-body communication device. In Proceedings of the TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; pp. 1722–1725. [Google Scholar]
- Cho, S.; Park, D. Frequency Shift Keying and Error Correction Technique for Robust Electrostatic Coupling Intra-Body Communication. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics, Kobe, Japan, 13–16 October 2020. [Google Scholar]
- Wegmueller, M.; Lehner, A.; Froehlich, J.; Reutemann, R.; Oberle, M.; Felber, N.; Kuster, N.; Hess, O.; Fichtner, W. Measurement System for the Characterization of the Human Body as a Communication Channel at Low Frequency. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 January 2005; pp. 3502–3505. [Google Scholar]
- Kurt, P.; Bradley, D.; Alireza, V.; Annie, C.; Ann, F.; Joseph, G.; Gaetano, B. Empirical Measurements of Intrabody Communication Performance under Varied Physical Configurations. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, Association for Computing Machinery, Orlando, FL, USA, 11–14 November 2001; pp. 183–190. [Google Scholar]
- Ansari, A.R.; Cho, S. Human body: The future communication channel for WBAN. In Proceedings of the 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), JeJu Island, Korea, 22–25 June 2014; pp. 1–3. [Google Scholar]
- Callejon, M.A.; Naranjo-Hernandez, D.; Reina-Tosina, J.; Roa, L.M. Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication. IEEE Trans. Biomed. Eng. 2012, 59, 3263–3269. [Google Scholar] [CrossRef] [PubMed]
- Seyedi, M.; Kibret, B.; Lai, D.T.H.; Faulkner, M. A Survey on Intrabody Communications for Body Area Network Applications. IEEE Trans. Biomed. Eng. 2013, 60, 2067–2079. [Google Scholar] [CrossRef]
- Kibret, B.; Seyedi, M.; Lai, D.T.H.; Faulkner, M. The effect of tissues in galvanic coupling Intrabody Communication. In Proceedings of the 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, Australia, 2–5 April 2013; pp. 318–323. [Google Scholar]
- Chen, C.M.; Wang, K.H.; Wu, T.Y.; Pan, J.S.; Sun, H.M. A scalable transitive human-verifiable authentication protocol for mobile devices. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1318–1330. [Google Scholar] [CrossRef]
- Wu, T.Y.; Lee, Z.; Obaidat, M.S.; Kumari, S.; Kumar, S.; Chen, C.M. An authenticated key exchange protocol for multi-server architecture in 5G networks. IEEE Access 2020, 8, 28096–28108. [Google Scholar] [CrossRef]
- Chen, C.M.; Xiang, B.; Wu, T.Y.; Wang, K.H. An anonymous mutual authenticated key agreement scheme for wearable sensors in wireless body area networks. Appl. Sci. 2018, 8, 1074. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Wang, K.H.; Fang, W.; Wu, T.Y.; Wang, E.K. Reconsidering a lightweight anonymous authentication protocol. J. Chin. Inst. Eng. 2019, 42, 9–14. [Google Scholar] [CrossRef]
- Kim, J.; Cho, J.; Park, D. Low-Power Command Protection Using SHA-CRC Inversion-Based Scrambling Technique for CAN-Integrated Automotive Controllers. In Proceedings of the 2018 IEEE Conference on Dependable and Secure Computing (DSC), Kaohsiung, Taiwan, 10–13 December 2018; pp. 1–2. [Google Scholar]
- Park, D.; Kim, T.G. Safe microcontrollers with error protection encoder-decoder using bit-inversion techniques for on-chip flash integrity verification. In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013; pp. 299–300. [Google Scholar]
- Park, D.; Kim, T.G.; Cho, G.; Lee, K.; Kim, C. A safe microcontroller with silent crc calculation hardware for code rom integrity verification in iec-60730 class-b. In Proceedings of the 1st IEEE Global Conference on Consumer Electronics 2012, Tokyo, Japan, 2–5 October 2012; pp. 197–200. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Pai, Y.T.; Chang, Y.F.; Ruan, S.J. Adaptive thresholding algorithm: Efficient computation technique based on intelligent block detection for degraded document images. Pattern Recognit. 2010, 43, 3177–3187. [Google Scholar] [CrossRef]
Zimmerman [12] | Hachisuka [20] | This Work | |
---|---|---|---|
Communication Method | Narrowband Modulation | Narrowband Modulation | Narrowband Modulation |
Modulation | OOK/DSSS | FM/FSK | FSK with software-based |
Carrier Frequency | 330 kHz sine wave | 10.7MHz sine wave | 50–75 kHz square wave |
Data Rate | 2.4 kbps | 9.6 kbps | 14 kbps |
Supply voltage | 9 V | 3 V | 5 V |
Power consumption | 400 mW | Not reported | 480 mW |
Hardware Structure | MCU and Tx/Rx circuitry | FM IC | GPIO and ADC in MCU |
Error Correction | No | No | 1-bit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Park, D. Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication. Sensors 2020, 20, 6056. https://doi.org/10.3390/s20216056
Cho S, Park D. Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication. Sensors. 2020; 20(21):6056. https://doi.org/10.3390/s20216056
Chicago/Turabian StyleCho, Seongho, and Daejin Park. 2020. "Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication" Sensors 20, no. 21: 6056. https://doi.org/10.3390/s20216056
APA StyleCho, S., & Park, D. (2020). Robust Intra-Body Communication Using SHA1-CRC Inversion-Based Protection and Error Correction for Securing Electronic Authentication. Sensors, 20(21), 6056. https://doi.org/10.3390/s20216056