Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring
Abstract
:1. Introduction
1.1. Lead-210 Measurement Applications
1.2. Outline of This Paper
2. Cmos Camera Specifications
3. Experimental Description
X-ray Data Taking
4. Data Analysis
4.1. Frame Background Calculation
4.1.1. Column Correction
4.1.2. Time-Series Analysis
4.2. Clustering
4.2.1. Threshold Calculation
4.2.2. Cluster Finding
4.2.3. Cluster Parameters
- the frame number
- the cluster number, which is a counter for all clusters in one frame
- the position, that is, the coordinates of the seed pixel
- the cluster size, that is, how many pixels make up a cluster
- the cluster charge, that is, the integral over all in a cluster subtracted by the cluster pedestal (In case of the time-series approach . Without the time-series approach subtracting the cluster pedestal is essential since it is different from zero.)
- the cluster pedestal, that is, the integral over all the clusters pixels’
- the charge of the pixel with the highest charge in the cluster (maximal charge).
4.2.4. Sizes of Identified Clusters
5. Performance of the Cmos as Radiation Detector
5.1. Calorimetric Capabilities of the Neo Scmos
5.1.1. Energy Response Calibration
5.1.2. Energy Resolution
5.2. Radiation Detection Efficiency
5.2.1. Geometric Acceptance of the Experimental Set-Up
5.2.2. Minimum Detectable Radioactivity
5.2.3. Detection Efficiency of the Neo Scmos
5.2.4. Cmos Sensor Thickness
5.3. Geant4 Simulations of the Neo Scmos Detector
5.3.1. Detector Geometry and Simulated Particles
5.3.2. Analysis of the Simulated Spectra
- The total number of events registered in the silicon layer increases with Si thickness which is caused by more particles being absorbed by a thicker Si layer.
- The number of events in the photo-peak and Compton continuum increases and decreases, respectively, as the silicon thickness increases. This is because the fraction of events for which the incident photons’ energy is fully contained in the Si rises as the thickness increases.
5.3.3. Comparison of Simulation with the Experimental Data
5.3.4. Closing Remarks
6. Summary and Discussion
Lead Detection Capabilities Assuming Lead-210 as a Trace Isotope
7. Outlook and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. Available online: https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ (accessed on 23 September 2020).
- Pure Earth. Fact Sheet: Lead. Available online: https://www.pureearth.org/lead-fact-sheet/ (accessed on 23 September 2020).
- Caravanos, J.; Dowling, R.; Téllez-Rojo, M.M.; Cantoral, A.; Kobrosly, R.; Estrada, D.; Orjuela, M.; Gualtero, S.; Ericson, B.; Rivera, A.; et al. Blood Lead Levels in Mexico and Pediatric Burden of Disease Implications. Ann. Glob. Health 2014, 80, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Drinking Water and Health: A Guide for Public and Environmental Health Professionals and for Those in the Water Industry in Northern Ireland. Available online: https://www.niwater.com/sitefiles/resources/pdf/guidancedocumentondrinkingwaterandhealth13.06.04.pdf (accessed on 23 September 2020).
- Orrell, J.L. Assay methods for238U,232Th, and210Pb in lead and calibration of210Bi bremsstrahlung emission from lead. J. Radioanal. Nucl. Chem. 2016, 309, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.; Lipovetzky, J.; Haro, M.S.; Sidelnik, I.; Blostein, J.J.; Bessia, F.A.; Berisso, M.G. Particle detection and classification using commercial off the shelf CMOS image sensors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2016, 827, 171–180. [Google Scholar] [CrossRef]
- Servoli, L.; Biagetti, D.; Passeri, D.; Gattuso, E.S. Characterization of standard CMOS pixel imagers as ionizing radiation detectors. J. Instrum. 2010, 5, P07003. [Google Scholar] [CrossRef]
- Appleby, P. Three decades of dating recent sediments by fallout radionuclides: A review. Holocene 2008, 18, 83–93. [Google Scholar] [CrossRef]
- Yanga, H.; Appleby, P.G. Use of lead-210 as a novel tracer for lead (Pb) sources in plants. Sci. Rep. 2016, 6, 21707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaudruz, P.A.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C.; Bishop, D.; Bonatt, J.; Boorman, G.; Boulay, M.; Broerman, B.; et al. Design and construction of the DEAP-3600 dark matter detector. Astropart. Phys. 2019, 108, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Nantais, C.M. Radiopurity Measurement of Acrylic for the DEAP-3600 Dark Matter Experiment. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2014. [Google Scholar]
- Widorski, M. Development of a Detection System to Measure Low Levels of 210Pb using β/γ Coincidence. Master’s Thesis, Royal Holloway University of London, London, UK, 2013. [Google Scholar]
- Milton, G.; Kramer, S.; Deal, R.; Earle, E. Ultra trace analysis of acrylic for 232Th and 238U daughters. Appl. Radiat. Isot. 1994, 45, 539–547. [Google Scholar] [CrossRef]
- Dr. Love Disputes EPA’s Position on FlintWater Safety: New FACHEP Research Reports a 100 Rate and 50 % Mortality Rate from Flint POU Filters. Available online: http://flintwaterstudy.org (accessed on 23 September 2020).
- Neo 5.5 sCMOS Specifications. Available online: https://pdf.medicalexpo.com/pdf/andor-technology-plc/neo-55-scmos/90363-177117.html (accessed on 23 September 2020).
- Agostinelli, S.; Allison, J.; Amako, K. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A. Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 2016, 94, 082006. [Google Scholar] [CrossRef] [Green Version]
- Instruction sheet 554 800. Available online: https://www.ld-didactic.de/documents/en-US/GA/GA/5/554/554800e.pdf (accessed on 23 September 2020).
- Flexible Image Transport System (FITS), Version 3.0. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd000317.shtml?__cf_chl_captcha_tk__=bc6cd77850ccaf05824c7ec7f6fb556b523d4a70-1601193275-0-AUn8UK_eKqsAwaEdoZTPoduYbWoEpd4HhBD4ePnjUsi7tup_9Eey5KHrD3Fhokbb2fJrrYn14MP2vXVwo9du6MDrZavmkyLnPxok5aYW7lawzJGj20B-XDYmANP5EVgDJS5XiIT6pYr8MOk_hAkM4RVYk9aSflmo5zYC9IIL8NJtJqq_-wkVt4rHcj6r1ssc_Kv-NCnkDZ3ybxrCcRSZavOAuJV7Qw-XGSQ08EaOKUsZ4BEXLFGRt1fZ9Ve-h_nXhKmEsw9OWpdN-pdCM4BTjoCwUfkedeDVvlpDy1-RveDJ0YS7hxMh1cuG_Ib-ZAXeabWCAYp7Fg9puNbQI4JI6XoFbKCvPZT8Mp-0yZUogZkkNtWqTWlmRV_DeupB-nUYZFAtHj56lsjvkMvFzV4zPynWfRdXFaAFp0xpGy64qGL46zk6zZBkWWo2TYw-OKLPwO_P0Fo4vSE8qRc6nKTy1mAErrR1pSjVlNx5xV8zQYbB8XNxEAQp-h1zd9R_-Qh2UfmuTVfwraiodKDzc5vjiGaHIUI2xgG-P9RfqlLkWIG6 (accessed on 23 September 2020).
- Brun, R.; Rademakers, F. ROOT: An object oriented data analysis framework. Nucl. Instrum. Meth. A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Chong, C.S.; Ibrahim, S.E.; Ahmad, S.M.K.; Abdul, A.T. Gamma Ray Spectrum of Am 241 in a Backscattering Geometry Using a High Purity Germanium Detector. In Proceedings of the International Nuclear Conference: A New era In Nuclear Science and Technology—The Challenge of the 21st Century, Kuala Lumpur, Malaysia, 27–28 October 1997. [Google Scholar]
- Demir, D.; Eroğlu, M.; Turşucu, A. Studying of characteristics of the HPGe detector for radioactivity measurements. J. Instrum. 2013, 8, P10027. [Google Scholar] [CrossRef]
- LiveChart of Nuclides—Advanced version. Available online: https://www.iaea.org/resources/databases/livechart-of-nuclides-advanced-version (accessed on 23 September 2020).
- Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. Available online: https://www.nist.gov/pml/stopping-power-and-range-tables-electrons-protons-and-helium-ions-version-history (accessed on 23 September 2020).
- Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Available online: https://www.nist.gov/pml/X-ray-mass-attenuation-coefficients (accessed on 23 September 2020).
- XCOM: Photon Cross Sections Database. Available online: https://www.nist.gov/pml/xcom-photon-cross-sections-database (accessed on 23 September 2020).
- Dark Matter Time Projection Chamber (DMTPC) Optical TPC for Low Energy Particle Tracking. Available online: http://dmtpc.mit.edu/twiki/pub/Projects/DmtpcPublications/GDruittMasterThesis.pdf (accessed on 23 September 2020).
- Kolanoski, H.; Wermes, N. Teilchendetektoren; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Gow, R.D.; Renshaw, D.; Findlater, K.; Grant, L.; McLeod, S.J.; Hart, J.; Nicol, R.L. A Comprehensive Tool for Modeling CMOS Image-Sensor-Noise Performance. IEEE Trans. Electron Devices 2007, 54, 1321–1329. [Google Scholar] [CrossRef]
- X-ray Mass Attenuation Coefficients. Available online: https://www.nist.gov/pml/X-ray-mass-attenuation-coefficients (accessed on 23 September 2020).
- WWW Table of Radioactive Isotopes. Available online: http://nucleardata.nuclear.lu.se/toi/ (accessed on 23 September 2020).
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
Setting | Value |
---|---|
Readout binning | |
Exposure time | 10 |
Camera to source distance | |
Number of exposures/data taking run | 100 |
Pixel Readout Rate (inverse row time) | 200 |
Dynamic Range | 16-bit |
Mode | Low noise/high well capacity |
Electronic Shuttering Mode | Rolling |
Energy | Source | Intensity |
---|---|---|
Np: , X-ray | ||
Np: , X-ray | ||
Np: , X-ray | ||
: | 2.3% | |
: | 35.9% |
Energy [keV] | Attenuation Length/ | |
---|---|---|
Range in Silicon | ||
-/X-ray | ||
10 | 111 | |
15 | 365 | |
45 | 7 | 16 |
60 | 12 | 28 |
100 | 20 | 66 |
1000 | 59 | 2 |
Source Radiation | Mo X-ray Tube | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
X-ray (Np) | X-ray | Zr Edge | ||||||||
Expected energy | 26.3 | 59.5 | 13.8 | 17.8 | 20.8 | 46.5 | 17.4 | 19.6 | 18.0 | |
Fit range | 9.87 | 23.49 | 4.99 | 6.01 | 7.78 | 18.37 | 1 | n.a. | ||
11.45 | 24.5 | 6.12 | 7.9 | 9.99 | 19.64 | 15 | n.a. | |||
Fit result | 10.65 | 24.13 | 5.54 | 7.1 | 8.37 | 18.94 | 7.08 | 7.85 | 7.3 | |
133 | 276 | 95 | 124 | 199 | 239 | 163 | 353 | n.a. | ||
1.22 | 1.05 | 1.61 | 2.2 | 1.32 | 0.77 | 4.62 | n.a. |
Incident Activity | Measured Rate | |||
---|---|---|---|---|
90% CL | 90% CL | |||
full spectrum | ||||
-peak | ||||
-peak |
Silicon Thickness | Glass Window | Full Absorption | |
---|---|---|---|
Thickness | Efficiency | ||
2 | 200 | 0.13 ± 0.04 | 0.41 ± 0.11 |
1000 | 0.09 ± 0.03 | 0.29 ± 0.10 | |
2000 | 0.10 ± 0.03 | 0.35 ± 0.01 | |
3 | 200 | 0.49 ± 0.07 | 1.1 ± 0.2 |
1000 | 0.40 ± 0.06 | 1.0 ± 0.1 | |
2000 | 0.41 ± 0.06 | 1.1 ± 0.2 | |
4 | 200 | 1.7 ± 0.1 | 3.3 ± 0.3 |
1000 | 1.4 ± 0.1 | 2.8 ± 0.2 | |
2000 | 1.4 ± 0.1 | 3.1 ± 0.3 | |
5 | 200 | 3.4 ± 0.2 | 5.7 ± 0.3 |
1000 | 3.3 ± 0.2 | 5.8 ± 0.3 | |
2000 | 2.6 ± 0.2 | 5.0 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Arevalo, A.; Bertou, X.; Canet, C.; Cruz-Pérez, M.A.; Deisting, A.; Dias, A.; D’Olivo, J.C.; Favela-Pérez, F.; Garcés, E.A.; González Muñoz, A.; et al. Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring. Sensors 2020, 20, 5746. https://doi.org/10.3390/s20205746
Aguilar-Arevalo A, Bertou X, Canet C, Cruz-Pérez MA, Deisting A, Dias A, D’Olivo JC, Favela-Pérez F, Garcés EA, González Muñoz A, et al. Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring. Sensors. 2020; 20(20):5746. https://doi.org/10.3390/s20205746
Chicago/Turabian StyleAguilar-Arevalo, Alexis, Xavier Bertou, Carles Canet, Miguel Angel Cruz-Pérez, Alexander Deisting, Adriana Dias, Juan Carlos D’Olivo, Francisco Favela-Pérez, Estela A. Garcés, Adiv González Muñoz, and et al. 2020. "Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring" Sensors 20, no. 20: 5746. https://doi.org/10.3390/s20205746
APA StyleAguilar-Arevalo, A., Bertou, X., Canet, C., Cruz-Pérez, M. A., Deisting, A., Dias, A., D’Olivo, J. C., Favela-Pérez, F., Garcés, E. A., González Muñoz, A., Guerra-Pulido, J. O., Mancera-Alejandrez, J., Marín-Lámbarri, D. J., Martinez Montero, M., Monroe, J., Paling, S., Peeters, S. J. M., Scovell, P., Türkoğlu, C., ... Walding, J. (2020). Dosimetry and Calorimetry Performance of a Scientific CMOS Camera for Environmental Monitoring. Sensors, 20(20), 5746. https://doi.org/10.3390/s20205746