Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Local Positioning System and Data Processing
2.4. Statistical Analyses
3. Results
3.1. Reliability
3.2. Descriptive Data
3.3. Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carling, C. Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach? Sports Med. 2013, 43, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Samozino, P.; Glynn, J.A.; Michael, B.S.; Al Haddad, H.; Mendez-Villanueva, A.; Morin, J.B. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J. Sports Sci. 2014, 32, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.W.; Baumgart, C.; Slomka, M.; Grim, C.; Engelhardt, M.; Freiwald, J. Konditionelle Leistungsdiagnostik im Hochleistungsfußball—Vergangenheit, Gegenwart und Zukunft. OUP 2018, 7, 536–544. [Google Scholar]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernàndez, J.; Medina, D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef] [Green Version]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Casamichana, D.; Castellano, J.; Calleja-Gonzalez, J.; San Román, J.; Castagna, C. Relationship between indicators of training load in soccer players. J. Strength Cond. Res. 2013, 27, 369–374. [Google Scholar] [CrossRef]
- Scott, B.R.; Lockie, R.G.; Knight, T.J.; Clark, A.C.; Janse de Jonge, X.A.K. A comparison of methods to quantify the in-season training load of professional soccer players. Int. J. Sports Physiol. Perform. 2013, 8, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.W.; Baumgart, C.; Polglaze, T.; Freiwald, J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE 2018, 13, e0192708. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Edgecomb, S.J.; Norton, K.I. Comparison of global positioning and computer-based tracking systems for measuring player movement distance during Australian football. J. Sci. Med. Sport 2006, 9, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Barbero-Alvarez, J.C.; Coutts, A.; Granda, J.; Barbero-Alvarez, V.; Castagna, C. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J. Sci. Med. Sport 2010, 13, 232–235. [Google Scholar] [CrossRef]
- Coutts, A.J.; Duffield, R. Validity and reliability of GPS devices for measuring movement demands of team sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef]
- Gray, A.J.; Jenkins, D.; Andrews, M.H.; Taaffe, D.R.; Glover, M.L. Validity and reliability of GPS for measuring distance travelled in field-based team sports. J. Sports Sci. 2010, 28, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.; Cormack, S.; Coutts, A.J.; Boyd, L.; Aughey, R.J. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int. J. Sports Physiol. Perform. 2010, 5, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Vickery, W.M.; Dascombe, B.J.; Baker, J.D.; Higham, D.G.; Spratford, W.A.; Duffield, R. Accuracy and reliability of GPS devices for measurement of sports-specific movement patterns related to cricket, tennis, and field-based team sports. J. Strength Cond. Res. 2014, 28, 1697–1705. [Google Scholar] [CrossRef]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables. J. Sports Sci. 2011, 29, 1613–1619. [Google Scholar] [CrossRef]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Colino, E.; Garcia-Unanue, J.; Sanchez-Sanchez, J.; Calvo-Monera, J.; Leon, M.; Carvalho, M.J.; Gallardo, L.; Felipe, J.L.; Navandar, A. Validity and reliability of a commercially available indoor tracking system to assess distance and time in court-based sports. Front. Psychol. 2019, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.W.; Baumgart, C.; Freiwald, J. Estimating external loads and internal demands by positioning systems and innovative data processing approaches during intermittent running activities in team and racquet sports. Sports Orthop. Traumatol. 2018, 34, 3–14. [Google Scholar] [CrossRef]
- Mertens, J.C.; Boschmann, A.; Schmidt, M.; Plessl, C. Sprint diagnostic with GPS and inertial sensor fusion. Sports Eng. 2018, 21, 441–451. [Google Scholar] [CrossRef]
- Sathyan, T.; Shuttleworth, R.; Hedley, M.; Davids, K. Validity and reliability of a radio positioning system for tracking athletes in indoor and outdoor team sports. Behav. Res. Methods 2012, 44, 1108–1114. [Google Scholar] [CrossRef] [Green Version]
- Frencken, W.G.P.; Lemmink, K.A.P.M.; Delleman, N.J. Soccer-specific accuracy and validity of the local position measurement (LPM) system. J. Sci. Med. Sport 2010, 13, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M.; Baca, A. Accuracy of the LPM tracking system considering dynamic position changes. J. Sports Sci. 2012, 30, 1503–1511. [Google Scholar] [CrossRef]
- Siegle, M.; Stevens, T.; Lames, M. Design of an accuracy study for position detection in football. J. Sports Sci. 2013, 31, 166–172. [Google Scholar] [CrossRef]
- Stevens, T.G.A.; de Ruiter, C.J.; van Niel, C.; van de Rhee, R.; Beek, P.J.; Savelsbergh, G.J.P. Measuring acceleration and deceleration in soccer-specific movements using a local position measurement (LPM) system. Int. J. Sports Physiol. Perform. 2014, 9, 446–456. [Google Scholar] [CrossRef]
- Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the Catapult ClearSky T6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.; Mason, B.; Perrat, B.; Smith, M.; Goosey-Tolfrey, V. The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports. J. Sports Sci. 2014, 32, 1639–1647. [Google Scholar] [CrossRef] [Green Version]
- Rico-González, M.; Los Arcos, A.; Clemente, F.M.; Rojas-Valverde, D.; Pino-Ortega, J. Accuracy and reliability of ocal positioning systems for measuring sport movement patterns in stadium-scale: A systematic review. Appl. Sci. 2020, 10, 5994. [Google Scholar] [CrossRef]
- Kinexon: KINEXON Stellt Hochpräzise Leistungsdaten für die EHF EUROs. Available online: https://kinexon.com/de/pr/kinexon-stellt-hochpraezise-leistungsdaten-fuer-ehf-euros-bereit (accessed on 4 March 2020).
- Link, D.; Weber, M.; Linke, D.; Lames, M. Can positioning systems replace timing gates for measuring sprint time in ice hockey? Front. Physiol. 2018, 9, 1882. [Google Scholar] [CrossRef] [Green Version]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Präzise Echtzeit-Lokalisierung Kombiniert mit Innovativen Analysen. Available online: https://kinexon.com/de (accessed on 14 September 2020).
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2015, 19, 36–44. [Google Scholar]
- Haugen, T.; Buchheit, M. Sprint running performance monitoring: Methodological and practical considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Reid, M.; Baker, J.; Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J. Sci. Med. Sport 2010, 13, 523–525. [Google Scholar] [CrossRef]
- Varley, M.C.; Jaspers, A.; Helsen, W.F.; Malone, J.J. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int. J. Sports Physiol. Perform. 2017, 12, 1059–1068. [Google Scholar] [CrossRef]
- Hoppe, M.W.; Baumgart, C.; Slomka, M.; Polglaze, T.; Freiwald, J. Variability of metabolic power data in elite soccer players during pre-season matches. J. Hum. Kinet. 2017, 58, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Muthukrishnan, K. Multimodal Localisation: Analysis, Algorithms and Experimental Evaluation; University of Twente: Enschede, The Netherlands, 2009. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for assessment of the reliability, sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity. JMIR Mhealth Uhealth 2018, 6, e102. [Google Scholar] [CrossRef]
- Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F.M.; Pino-Ortega, J. A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors 2020, 20, 2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Descriptive Data (Mean ± SD) | Effect Size | Magnitude-Based Inferences | ||||
---|---|---|---|---|---|---|---|
Outdoor (n = 80) | Indoor (n = 89) | d | Descriptor | SWD | SWD ± 90% CI (x-Fold) | Descriptor | |
25.1 m sprinting with CODs (1) (s) | 6.03 ± 0.27 | 5.95 ± 0.25 | 0.32 | small | 0.05 | −1.3 ± 1.0 | * |
5 m sprinting (6) (s) | 1.10 ± 0.05 | 1.10 ± 0.06 | 0.06 | trivial | 0.01 | 1.0 ± 1.1 | u |
10 m sprinting (7) (s) | 1.85 ± 0.09 | 1.85 ± 0.09 | 0.07 | trivial | 0.02 | 0.5 ± 1.0 | ** |
20 m sprinting (8) (s) | 3.17 ± 0.15 | 3.14 ± 0.14 | 0.19 | trivial | 0.03 | −0.1 ± 1.0 | * |
30 m sprinting (9) (s) | 4.43 ± 0.20 | 4.38 ± 0.21 | 0.25 | small | 0.04 | −0.4 ± 1.0 | * |
129.6 m entire circuit (10) (s) | 97.45 ± 3.94 | 95.30 ± 3.32 | 0.59 | small | 0.73 | −2.7 ± 0.8 | *** |
HR (bpm) | 159.6 ± 9.8 | 154.7 ± 10.2 | 0.42 | small | 2.4 | −2.1 ± 1.9 | u |
RPE (1–20) | 14.6 ± 1.0 | 13.4 ± 1.2 | 1.09 | moderate | 0.2 | −5.5 ± 3.3 | ** |
Variable | Outdoor (n = 80) | Indoor (n = 89) | ||||
---|---|---|---|---|---|---|
Raw Data | BW 1 Hz | Manufacturer | Raw Data | BW 1 Hz | Manufacturer | |
25.1 m sprinting with CODs (1) (m) | 24.7 ± 0.4 | 24.7 ± 0.4 | 22.7 ± 0.4 | 24.5 ± 0.5 | 24.5 ± 0.5 | 23.1 ± 0.4 |
10 m walking with CODs (2) (m) | 10.5 ± 0.2 | 10.6 ± 0.2 | 10.1 ± 0.2 | 10.5 ± 0.3 | 10.5 ± 0.3 | 10.2 ± 0.2 |
10 m jogging with jump (3) (m) | 10.4 ± 0.2 | 10.4 ± 0.2 | 10.2 ± 0.1 | 10.4 ± 0.2 | 10.5 ± 0.3 | 10.3 ± 0.2 |
10 m jogging (4) (m) | 10.2 ± 0.2 | 10.6 ± 0.6 | 10.0 ± 0.1 | 10.3 ± 0.3 | 10.5 ± 0.3 | 10.2 ± 0.3 |
10 m walking (5) (m) | 10.5 ± 0.3 | 10.9 ± 0.7 | 10.1 ± 0.1 | 10.1 ± 0.2 | 10.2 ± 0.2 | 10.0 ± 0.1 |
5 m sprinting (6) (m) | 5.0 ± 0.2 | 5.0 ± 0.2 | 4.8 ± 0.2 | 5.0 ± 0.3 | 5.0 ± 0.3 | 4.9 ± 0.3 |
10 m sprinting (7) (m) | 10.2 ± 0.3 | 10.2 ± 0.3 | 9.9 ± 0.3 | 10.2 ± 0.3 | 10.3 ± 0.4 | 10.0 ± 0.4 |
20 m sprinting (8) (m) | 20.5 ± 0.5 | 20.5 ± 0.4 | 20.2 ± 0.4 | 20.4 ± 0.5 | 20.4 ± 0.4 | 20.2 ± 0.4 |
30 m sprinting (9) (m) | 30.5 ± 0.3 | 30.6 ± 0.3 | 30.2 ± 0.3 | 30.4 ± 0.5 | 30.4 ± 0.4 | 30.2 ± 0.4 |
129.6 m entire circuit (10) (m) | 139.0 ± 2.3 | 139.3 ± 2.1 | 130.8 ± 1.5 | 135.9 ± 3.0 | 136.6 ± 2.7 | 131.1 ± 2.4 |
Noise during standing (10) (m) | 8.0 ± 1.4 | 7.0 ± 0.9 | 3.5 ± 0.45 | 6.5 ± 0.8 | 6.0 ± 0.7 | 3.7 ± 0.5 |
Peak speed (1) (m/s) | 6.3 ± 0.7 | 5.7 ± 0.3 | 5.3 ± 0.20 | 5.8 ± 0.3 | 5.5 ± 0.2 | 5.2 ± 0.2 |
Peak acceleration (1) (m/s2) | 33.6 ± 18.4 | 4.1 ± 0.5 | 4.5 ± 0.63 | 26.0 ± 14.7 | 4.1 ± 0.5 | 5.5 ± 0.8 |
Peak deceleration (1) (m/s2) | −24.8 ± 16.0 | −3.2 ± 0.4 | −4.7 ± 0.66 | −18.6 ± 8.3 | −3.3 ± 0.3 | −5.4 ± 0.7 |
Peak speed (6–9) (m/s) | 8.9 ± 0.7 | 8.2 ± 0.4 | 8.1 ± 0.41 | 8.6 ± 0.6 | 8.3 ± 0.4 | 8.2 ± 0.4 |
Peak acceleration (6–9) (m/s2) | 46.1 ± 28.2 | 4.8 ± 0.4 | 5.4 ± 0.53 | 28.7 ± 23.4 | 4.9 ± 0.4 | 6.3 ± 0.9 |
Variable | Outdoor (n = 80) | Indoor (n = 89) | ||||
---|---|---|---|---|---|---|
Raw Data | BW 1 Hz | Manufacturer | Raw Data | BW 1 Hz | Manufacturer | |
25.1 m sprinting with CODs (1) (%) | 1.4 ± 0.2 | 1.5 ± 0.2 | 1.8 ± 0.2 | 1.9 ± 0.2 | 1.9 ± 0.2 | 1.9 ± 0.2 |
10 m walking with CODs (2) (%) | 1.7 ± 0.2 | 2.1 ± 0.3 | 1.6 ± 0.2 | 2.4 ± 0.3 | 2.5 ± 0.3 | 2.0 ± 0.3 |
10 m jogging with jump (3) (%) | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.3 ± 0.2 | 2.3 ± 0.3 | 2.9 ± 0.4 | 2.2 ± 0.3 |
10 m jogging (4) (%) | 2.0 ± 0.3 | 5.4 ± 0.7 | 0.9 ± 0.1 | 3.1 ± 0.4 | 3.3 ± 0.4 | 2.8 ± 0.4 |
10 m walking (5) (%) | 2.6 ± 0.4 | 6.4 ± 0.9 | 1.1 ± 0.1 | 1.6 ± 0.2 | 2.2 ± 0.3 | 1.3 ± 0.2 |
5 m sprinting (6) (%) | 5.1 ± 0.7 | 4.1 ± 0.6 | 4.4 ± 0.6 | 7.1 ± 0.9 | 5.8 ± 0.8 | 6.2 ± 0.8 |
10 m sprinting (7) (%) | 3.1 ± 0.4 | 2.5 ± 0.3 | 2.7 ± 0.4 | 4.3 ± 0.6 | 3.6 ± 0.5 | 3.8 ± 0.5 |
20 m sprinting (8) (%) | 2.2 ± 0.3 | 2.0 ± 0.3 | 2.1 ± 0.3 | 2.3 ± 0.3 | 1.9 ± 0.2 | 2.0 ± 0.3 |
30 m sprinting (9) (%) | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.5 ± 0.2 | 1.2 ± 0.2 | 1.3 ± 0.2 |
129.6 m entire circuit (10) (%) | 1.7 ± 0.2 | 1.5 ± 0.2 | 1.1 ± 0.2 | 2.2 ± 0.3 | 2.0 ± 0.3 | 1.9 ± 0.2 |
Overall TEE (%) | 2.2 ± 1.2 | 2.8 ± 1.9 | 1.8 ± 1.1 | 2.9 ± 1.7 | 2.7 ± 1.3 | 2.5 ± 1.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alt, P.S.; Baumgart, C.; Ueberschär, O.; Freiwald, J.; Hoppe, M.W. Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports. Sensors 2020, 20, 5733. https://doi.org/10.3390/s20205733
Alt PS, Baumgart C, Ueberschär O, Freiwald J, Hoppe MW. Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports. Sensors. 2020; 20(20):5733. https://doi.org/10.3390/s20205733
Chicago/Turabian StyleAlt, Prisca S., Christian Baumgart, Olaf Ueberschär, Jürgen Freiwald, and Matthias W. Hoppe. 2020. "Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports" Sensors 20, no. 20: 5733. https://doi.org/10.3390/s20205733
APA StyleAlt, P. S., Baumgart, C., Ueberschär, O., Freiwald, J., & Hoppe, M. W. (2020). Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports. Sensors, 20(20), 5733. https://doi.org/10.3390/s20205733