Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Optical Sensors Measurements
2.4. Leaf N Content
2.5. Cultivar Characterization
2.6. Statistical Analysis
3. Results
3.1. Cultivars Characterization
3.2. Differences in Leaf N Content between Cultivars
3.3. Chlorophyll Meter Measurements
3.4. Canopy Reflectance Measurements
3.5. Relationships between Optical Sensor Measurements and Leaf N Content
4. Discussion
4.1. Assessment of Cultivar Effects on Optical Sensor Measurements
4.2. Relationships Between Optical Sensor Measurements and Leaf N Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Muñoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Schepers, J.S.; Raun, W.R. Crop Nitrogen Requirement and Fertilization. Am. Soc. Agron. Crop Sci. Soc. Am. Soil Sci. Soc. Am. 2008, 563–612. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; de Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Bensi, S.; Molina, L.; Vallejos, A.; Calaforra, J.M.; Pulido-Leboeuf, P. Nitrates as indicators of aquifer interconnection. Application to the Campo de Dalias (SE - Spain). Environ. Geol. 2000, 39, 791–799. [Google Scholar] [CrossRef]
- Cui, M.; Sun, X.; Hu, C.; Di, H.J.; Tan, Q.; Zhao, C. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J. Soils Sediments 2011, 11, 722–730. [Google Scholar] [CrossRef]
- Thompson, R.B.; Tremblay, N.; Fink, M.; Gallardo, M.; Padilla, F.M. Tools and strategies for sustainable nitrogen fertilisation of vegetable crops. In Advances in Research on Fertilization Management in Vegetable Crops; Tei, F., Nicola, S., Benincasa, P., Eds.; Springer: Heidelberg, Germany, 2017; pp. 11–63. [Google Scholar]
- Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Res. 2000, 66, 151–164. [Google Scholar] [CrossRef]
- Fox, R.H.; Walthall, C.L. Crop monitoring technologies to assess nitrogen status. In Nitrogen in Agricultural Systems, Agronomy Monograph No. 49; Schepers, J.S., Raun, W.R., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2008; pp. 647–674. [Google Scholar]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Schepers, J.S.; Blackmer, T.M.; Wilhelm, W.W.; Resende, M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. J. Plant Physiol. 1996, 148, 523–529. [Google Scholar] [CrossRef]
- Gianquinto, G.; Goffart, J.P.; Olivier, M.; Guarda, G.; Colauzzi, M.; Dalla Costa, L.; Delle Vedove, G.; Vos, J.; Mackerron, D.K.L. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res. 2004, 47, 35–80. [Google Scholar] [CrossRef]
- Ollinger, S. V Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef]
- Sultana, S.R.; Ali, A.; Ahmad, A.; Mubeen, M.; Zia-Ul-Haq, M.; Ahmad, S.; Ercisli, S.; Jaafar, H.Z.E. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. Sci. World J. 2014, 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Wakiyama, Y. The relationship between SPAD values and leaf blade chlorophyll content throughout the rice development cycle. Jpn. Agric. Res. Q. 2016, 50, 329–334. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Claessens, A.; Lefebvre, L.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L.E. Plant-based diagnostic tools for evaluating wheat nitrogen status. Crop Sci. 2010, 50, 2580–2590. [Google Scholar] [CrossRef]
- Debaeke, P.; Rouet, P.; Justes, E. Relationship between the normalized SPAD index and the nitrogen nutrition index: Application to durum wheat. J. Plant Nutr. 2006, 29, 75–92. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Olivier, M.; Goffart, J.P.; Ledent, J.F. Threshold value for chlorophyll meter as decision tool for nitrogen management of potato. Agron. J. 2006, 98, 496–506. [Google Scholar] [CrossRef]
- Gianquinto, G.; Sambo, P.; Bona, S. The use of SPAD-502 chlorophyll meter for dynamically optimising the nitrogen supply in potato crop: A methodological approach. Acta Hortic. 2003, 627, 217–224. [Google Scholar] [CrossRef]
- Gianquinto, G.; Orsini, F.; Fecondini, M.; Mezzetti, M.; Sambo, P.; Bona, S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur. J. Agron. 2011, 35, 135–143. [Google Scholar] [CrossRef]
- Güler, S.; Büyük, G. Relationships among chlorophyll-meter reading value, leaf N and yield of cucumber and tomatoes. Acta Hortic. 2007, 729, 307–311. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Ann. Appl. Biol. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. Eur. J. Agron. 2017, 84. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Monostori, I.; Árendás, T.; Hoffman, B.; Galiba, G.; Gierczik, K.; Szira, F.; Vágújfalvi, A. Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica 2016, 211, 103–112. [Google Scholar] [CrossRef]
- Hoel, B.O. Chlorophyll meter readings in winter wheat: Cultivar differences and prediction of grain protein content. Acta Agric. Scand. Sect. B Soil Plant Sci. 2003, 52, 147–157. [Google Scholar] [CrossRef]
- Peng, S.; Garcia, F.V.; Laza, R.C.; Cassman, K.G. Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agron. J. 1993, 85, 987–990. [Google Scholar] [CrossRef]
- Sandoval-Villa, M.; Guertal, E.A.; Wood, C.W. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength. J. Plant Nutr. 2000, 23, 649–661. [Google Scholar] [CrossRef]
- Samborski, S.M.; Gozdowski, D.; Walsh, O.S.; Lamb, D.W.; Stępień, M.; Gacek, E.S.; Drzazga, T. Winter wheat genotype effect on canopy reflectance: Implications for using NDVI for in-season nitrogen topdressing recommendations. Agron. J. 2015, 107, 2097–2106. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [Google Scholar] [CrossRef]
- Padilla, F.M.; Thompson, R.B.; Peña-Fleitas, M.T.; Gallardo, M. Reference values for phenological phases of chlorophyll meter readings and reflectance indices for optimal N nutrition of fertigated tomato. Acta Hortic. 2018, 1192, 65–72. [Google Scholar] [CrossRef]
- Solari, F.; Shanahan, J.; Ferguson, R.; Schepers, J.; Gitelson, A. Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron. J. 2008, 100, 571–579. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Fitzgerald, G.J. Characterizing vegetation indices derived from active and passive sensors. Int. J. Remote Sens. 2010, 31, 4335–4348. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- ArchMiller, A.A.; Samuelson, L.J. Intra-annual variation of soil respiration across four heterogeneous longleaf pine forests in the southeastern United States. For. Ecol. Manage. 2016, 359, 370–380. [Google Scholar] [CrossRef]
- Yuan, Z.; Ata-Ul-Karim, S.T.; Cao, Q.; Lu, Z.; Cao, W.; Zhu, Y.; Liu, X. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Res. 2016, 185, 12–20. [Google Scholar] [CrossRef]
- Minotti, P.L.; Halseth, D.E.; Sieczka, J.B. Field chlorophyll measurements to assess the nitrogen status of potato varieties. HortScience 1994, 29, 1497–1500. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.Z.; Ata-Ul-Karim, S.T.; Xiao, J.; Liu, Z.Z.; Qi, A.; Ning, D.; Nan, J.; Duan, A. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res. 2016, 185, 59–68. [Google Scholar] [CrossRef]
- Liu, X.; Ferguson, R.B.; Zheng, H.; Cao, Q.; Tian, Y.; Cao, W.; Zhu, Y. Using an active-optical sensor to develop an optimal NDVI dynamic model for high-yield rice production (Yangtze, China). Sensors 2017, 17, 672. [Google Scholar] [CrossRef]
- Wang, Y.W.; Mao, P.S.; Dunn, B.L.; Arnall, D.B. Use of an active canopy sensor and SPAD chlorophyll meter to quantify geranium nitrogen status. HortScience 2012, 47, 45–50. [Google Scholar] [CrossRef]
- Johansen, B.; Tømmervik, H. The relationship between phytomass, NDVI and vegetationcommunities on Svalbard. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 20–30. [Google Scholar] [CrossRef]
- Hikishima, M.; Giovanetti Canteri, M.; Godoy, C.V.; Koga, L.J.; da Silva, A.J. Quantificação de danos e relações entre severidade, medidas de refletância e produtividade no patossistema ferrugem asiática da soja. Trop. Plant Pathol. 2011, 35, 96–103. [Google Scholar] [CrossRef][Green Version]
- Gitelson, A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Esfahani, M.; Abbasi, H.R.A.; Rabiei, B.; Kavousi, M. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). Paddy Water Environ. 2008, 6, 181–188. [Google Scholar] [CrossRef]
- Castelli, F.; Contillo, R. Using a Chlorophyll Meter to Evaluate the Nitrogen Leaf Content in Flue-Cured Tobacco (Nicotiana tabacum L.). Ital. J. Agron. 2009, 4, 3–11. [Google Scholar] [CrossRef]
Cultivar | LAI | Crop Height (m) | Luminance (Y) | Coordinate x | Coordinate y |
---|---|---|---|---|---|
‘Strategos’ | 5.68 ± 0.69 a | 1.75 ± 0.11 a | 10.47 ± 0.72 a | 0.331 ± 0.003 a | 0.401 ± 0.007 a |
‘Pradera’ | 5.20 ± 0.74 b | 1.71 ± 0.12 a | 9.57 ± 0.84 b | 0.330 ± 0.003 a,b | 0.396 ± 0.008 b |
‘Mitre’ | 4.98 ± 0.70 b | 1.72 ± 0.11 a | 8.94 ± 0.70 c | 0.328 ± 0.003 b | 0.390 ± 0.007 c |
DAT | SPAD | CCI | NDVI | GVI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Strategos’ | ‘Pradera’ | ‘Mitre’ | ‘Strategos’ | ‘Pradera’ | ‘Mitre’ | ‘Strategos’ | ‘Pradera’ | ‘Mitre’ | ‘Strategos’ | ‘Pradera’ | ‘Mitre’ | |
22 | 0.005 | 0.350 | 0.262 | 0.009 | 0.281 | 0.177 | ||||||
29 | 0.046 | 0.281 | 0.215 | 0.046 | 0.201 | 0.131 | 0.262 | 0.409 | 0.281 | 0.350 | 0.019 | 0.166 |
36 | 0.070 | 0.139 | 0.098 | 0.057 | 0.083 | 0.001 | 0.245 | 0.262 | 0.377 | 0.350 | 0.189 | 0.229 |
43 | 0.048 | 0.201 | 0.078 | 0.015 | 0.103 | 0.001 | 0.147 | 0.409 | 0.444 | 0.041 | 0.087 | 0.189 |
50 | 0.116 | 0.131 | 0.034 | 0.123 | 0.123 | <0.001 | 0.098 | 0.409 | 0.350 | 0.201 | 0.281 | 0.215 |
57 | 0.377 | 0.324 | 0.078 | 0.229 | 0.262 | 0.032 | 0.444 | 0.377 | 0.177 | 0.324 | 0.377 | 0.166 |
64 | 0.484 | 0.302 | 0.147 | 0.484 | 0.054 | 0.229 | 0.281 | 0.281 | 0.324 | 0.444 | 0.166 | 0.215 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, R.; Grasso, R.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B.; Padilla, F.M. Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber. Sensors 2020, 20, 509. https://doi.org/10.3390/s20020509
de Souza R, Grasso R, Peña-Fleitas MT, Gallardo M, Thompson RB, Padilla FM. Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber. Sensors. 2020; 20(2):509. https://doi.org/10.3390/s20020509
Chicago/Turabian Stylede Souza, Romina, Rafael Grasso, M. Teresa Peña-Fleitas, Marisa Gallardo, Rodney B. Thompson, and Francisco M. Padilla. 2020. "Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber" Sensors 20, no. 2: 509. https://doi.org/10.3390/s20020509
APA Stylede Souza, R., Grasso, R., Peña-Fleitas, M. T., Gallardo, M., Thompson, R. B., & Padilla, F. M. (2020). Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber. Sensors, 20(2), 509. https://doi.org/10.3390/s20020509