Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions
Abstract
:1. Introduction
2. Measuring System
2.1. System Requirements
2.2. System Elements
2.3. System Application in Civil Engineering Practice
3. Wind Tunnel Tests
3.1. Wind Tunnel Set-Up
- The anemometer was rotated in the horizontal plane at the following α angles: 0° (360°), 45°, 90°, 135°, 180°, 225°, 270°, and 315°. The angle of inclination in the vertical plane was constant, β = 0°. The tests were performed for one 3D and five 2D anemometers. The tunnel wind speed was constant.
- The anemometer was rotated in the vertical plane at the following β angles: −15°, −10°, −5°, 0°, +5°, +10°, +15°, +20°, +25°, +35°. The anemometer inclination in the direction against the flow was assumed as positive and that with the flow was assumed as negative. The tests were performed for one 2D and one 3D anemometer in two horizontal positions, at α = 0° and α = 90°. The tunnel wind speed was constant.
- The horizontal and vertical positions were constant, α = 0° and β = 0°. The tunnel wind speed was changed gradually. The tests were performed for one 2D and one 3D anemometer.
3.2. Influence of Horizontal Rotation Angle (Changing α, β = 0°)
3.3. Influence of Inclination (Changing β, α = 0° and α = 90°)
3.4. Influence of Wind Speed (α = 0°, β = 0°)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suomi, I.; Vihma, T. Wind gust measurement techniques—From traditional anemometry to new possibilities. Sensors 2018, 18, 1300. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, J.B.; Cheynet, E.; Snæbjörnsson, J.; Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Hansen, P.; Mann, J.; Svardal, B.; Kumer, V.; et al. Assessment of wind conditions at a Fjord inlet by complementary use of sonic anemometers and lidars. Energy Procedia 2015, 80, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Cheynet, E.; Jakobsen, J.B.; Snæbjörnsson, J.; Angelou, N.; Mikkelsen, T.; Sjöholm, M.; Svardal, B. Full-scale observation of the flow downstream of a suspension bridge deck. J. Wind Eng. Ind. Aerodyn. 2017, 171, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Shimada, S.; Goit, J.P.; Ohsawa, T.; Kogaki, T.; Nakamura, S. Coastal wind measurements using a single scanning LiDAR. Remote Sens. 2020, 12, 1347. [Google Scholar] [CrossRef] [Green Version]
- Górski, P. Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition. Eng. Struct. 2017, 148, 277–292. [Google Scholar] [CrossRef]
- Quesada-Olmo, N.; Jimenez-Martinez, M.J.; Farjas-Abadia, M. Real-time high-rise building monitoring system using global navigation satellite system technology. Meas. J. Int. Meas. Confed. 2018, 123, 115–124. [Google Scholar] [CrossRef]
- Xi, R.; Jiang, W.; Meng, X.; Chen, H.; Chen, Q. Bridge monitoring using BDS-RTK and GPS-RTK techniques. Meas. J. Int. Meas. Confed. 2018, 120, 128–139. [Google Scholar] [CrossRef]
- Golzio, A.; Bollati, I.M.; Ferrarese, S. An assessment of coordinate rotation methods in sonic anemometer measurements of turbulent fluxes over complex mountainous terrain. Atmosphere 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Frank, J.M.; Massman, W.J.; Chan, W.S.; Nowicki, K.; Rafkin, S.C.R. Coordinate Rotation–Amplification in the Uncertainty and Bias in Non-orthogonal Sonic Anemometer Vertical Wind Speeds. Bound. Layer Meteorol. 2020, 175, 203–235. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.S. Observations of typhoon effects on a high-rise building and verification of wind tunnel predictions. J. Wind Eng. Ind. Aerodyn. Ind. Aerodyn. 2019, 184, 174–184. [Google Scholar] [CrossRef]
- Li, Q.; Shu, Z. Structural health monitoring for a 600 m high skyscraper. Struct. Des. Tall Spec. Build. Spec. Build. 2018, 27, e1490. [Google Scholar] [CrossRef]
- He, Y.; Han, X.; Li, Q.; Zhu, H.; He, Y. Monitoring of wind effects on 600 m high Ping-An Finance Center during Typhoon Haima. Eng. Struct. 2018, 167, 308–326. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, J.W.; Li, Q.S. Dynamic characteristics and wind-induced responses of a super-tall building during typhoons. J. Wind Eng. Ind. Aerodyn. 2013, 121, 116–130. [Google Scholar] [CrossRef]
- Li, Q.S.; Hu, S.Y. Monitoring of wind effects on a low-rise building during typhoon landfalls and comparison to wind tunnel test results. Struct. Control Heal. Monit. 2014, 1360–1386. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, Q.S.; Yan, B.W.; Li, J.C. Field measurements of wind effects on a low-rise building with roof overhang during typhoons. J. Wind Eng. Ind. Aerodyn. 2018, 176, 143–157. [Google Scholar] [CrossRef]
- Bender, W.; Waytuck, D.; Wang, S.; Reed, D.A. In situ measurement of wind pressure loadings on pedestal style rooftop photovoltaic panels. Eng. Struct. 2018, 163, 281–293. [Google Scholar] [CrossRef]
- Habte, F.; Asghari Mooneghi, M.; Baheru, T.; Zisis, I.; Gan Chowdhury, A.; Masters, F.; Irwin, P. Wind loading on ridge, hip and perimeter roof tiles: A full-scale experimental study. J. Wind Eng. Ind. Aerodyn. 2017, 166, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Bartko, M.; Molleti, S.; Baskaran, A. In situ measurements of wind pressures on low slope membrane roofs. J. Wind Eng. Ind. Aerodyn. 2016, 153, 78–91. [Google Scholar] [CrossRef]
- Snæbjörnsson, J.T.; Geurts, C.P.W. Modelling surface pressure fluctuations on medium-rise buildings. J. Wind Eng. Ind. Aerodyn. 2006, 94, 845–858. [Google Scholar] [CrossRef]
- Gullbrekken, L.; Uvsløkk, S.; Kvande, T.; Pettersson, K.; Time, B. Wind pressure coefficients for roof ventilation purposes. J. Wind Eng. Ind. Aerodyn. 2018, 175, 144–152. [Google Scholar] [CrossRef]
- Dama, A.; Angeli, D.; Larsen, O.K. Naturally ventilated double-skin façade in modeling and experiments. Energy Build. 2017, 144, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Gough, H.L.; Luo, Z.; Halios, C.H.; King, M.F.; Noakes, C.J.; Grimmond, C.S.B.; Barlow, J.F.; Hoxey, R.; Quinn, A.D. Field measurement of natural ventilation rate in an idealised full-scale building located in a staggered urban array: Comparison between tracer gas and pressure-based methods. Build. Environ. 2018, 137, 246–256. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, X.; Zhai, J.; Niu, X.; Liu, L.L. Theoretical predictions and field measurements for potential natural ventilation in urban vehicular tunnels with roof openings. Build. Environ. 2014, 82, 450–458. [Google Scholar] [CrossRef]
- Etyemezian, V.; Nikolich, G.; Gillies, J.A. Mean flow through utility scale solar facilities and preliminary insights on dust impacts. J. Wind Eng. Ind. Aerodyn. 2017, 162, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, F.; Liu, J.; Wu, J.; Bienkiewicz, B. Mobile mapping technology of wind velocity data along highway for traffic safety evaluation. Transp. Res. Part C Emerg. Technol. 2010, 18, 507–518. [Google Scholar] [CrossRef]
- Swarno, H.A.; Zaki, S.A.; Hagishima, A.; Yusup, Y. Characteristics of wind speed during rainfall event in the tropical urban city. Urban Clim. 2020, 32, 100620. [Google Scholar] [CrossRef]
- Levitan, M.C.; Mehta, K.C. Texas Tech field experiments for wind loads. Part I. Building and pressure measuring system. J. Wind Eng. Ind. Aerodyn. 1992, 43, 1565–1576. [Google Scholar] [CrossRef]
- Levitan, M.C.; Mehta, K.C. Texas tech field experiments for wind loads. Part II. Meteorological instrumentation and terrain parameters. J. Wind Eng. Ind. Aerodyn. 1992, 43, 1577–1588. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Wind loads on the roof of a 6 m cube. J. Wind Eng. Ind. Aerodyn. 2008, 96, 984–993. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Pressures on a cubic building-Part 1: Full-scale results. J. Wind Eng. Ind. Aerodyn. 2012, 102, 72–86. [Google Scholar] [CrossRef]
- Vahidzadeh, M.; Markfort, C.D. An induction curve model for prediction of power output of wind turbines in complex conditions. Energies 2020, 13, 891. [Google Scholar] [CrossRef] [Green Version]
- Chrysochoidis-Antsos, N.; Amoros, A.V.; van Bussel, G.J.W.; Mertens, S.M.; van Wijk, A.J.M. Wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers—An experimental study. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104206. [Google Scholar] [CrossRef]
- Tieleman, H.W. Strong wind observations in the atmospheric surface layer. J. Wind Eng. Ind. Aerodyn. 2008, 96, 41–77. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, S.; Barlow, J.; Gatey, D.; Kotthaus, S.; Lindberg, F.; Halios, C.H. Evaluation of urban kocal-scale aerodynamic parameters: Implications for the vertical profile of wind speed and for source areas. Bound. Layer Meteorol. 2017, 164, 1–31. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, C.S.B.; Gatey, D.; Barlow, J.F. Assessing methods to extrapolate the vertical wind-speed profile from surface observations in a city centre during strong winds. J. Wind Eng. Ind. Aerodyn. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Höbbel, T.; Thiele, K.; Clobes, M. Wind turbulence parameters from three dimensional full-scale measurements at 344 m high guyed mast site Gartow 2. J. Wind Eng. Ind. Aerodyn. 2018, 172, 341–350. [Google Scholar] [CrossRef]
- Prudden, S.; Fisher, A.; Marino, M.; Mohamed, A.; Watkins, S.; Wild, G. Measuring wind with Small Unmanned Aircraft Systems. J. Wind Eng. Ind. Aerodyn. 2018, 176, 197–210. [Google Scholar] [CrossRef]
- Bruschi, P.; Piotto, M.; Dell’Agnello, F.; Ware, J.; Roy, N. Wind speed and direction detection by means of solid-state anemometers embedded on small quadcopters. Procedia Eng. 2016, 168, 802–805. [Google Scholar] [CrossRef]
- Brewer, M.J.; Clements, C.B. Meteorological profiling in the fire environment using UAS. Fire 2020, 3, 36. [Google Scholar] [CrossRef]
- Simma, M.; Mjøen, H.; Boström, T. Measuring Wind Speed Using the Internal Stabilization System of a Quadrotor Drone. Drones 2020, 4, 23. [Google Scholar] [CrossRef]
- González-Rocha, J.; De Wekker, S.F.J.; Ross, S.D.; Woolsey, C.A. Wind profiling in the lower atmosphere from wind-induced perturbations to multirotor UAS. Sensors 2020, 20, 1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamińska-Gadomska, P.; Lipecki, T.; Pieńko, M.; Podgórski, J. Wind velocity changes along the passage between two angled walls—CFD simulations and full-scale measurements. Build. Environ. 2019, 157, 391–401. [Google Scholar] [CrossRef]
- Jamińska-Gadomska, P.; Lipecki, T.; Bęc, J.; Błazik-Borowa, E. Wind flow patterns around scaffoldings from full-scale measurements. In Proceedings of the 7th European-African Conference on Wind Engineering, Liege, Belgium, 4–7 July 2017; p. 179. [Google Scholar]
Specification | 3D | 2D |
---|---|---|
Wind speed range | 0.01–85 m/s | 0.01–75 m/s |
Maximum resolution of wind speed | 0.01 m/s | 0.01 m/s |
Accuracy of wind speed | ±0.1 m/s (v < 5 m/s) ±1% (5 < v < 35 m/s) ±2% (35 < v < 85 m/s) | ±0.2 m/s (v < 5 m/s) ±2% (5 < v < 60 m/s) |
Wind speed direction range | 360° | 360° |
Maximum resolution of wind speed direction | 0.1° | 0.1° |
Accuracy of wind speed direction | ±1° (1 < v < 35 m/s), ±2° (35 < v < 65 m/s), ±4° (65 < v < 85 m/s) | ±2° (v > 1 m/s) |
Specification | Barometer | Thermohygrometer |
---|---|---|
Humidity/atmospheric pressure/temperature range | 800–1100 hPa | −30 to +70 °C 0–100% RH |
Accuracy | ±1% | ±0.2 °C (temperature) ±2% (humidity) |
Working temperature range | −40 to +85 °C | −40 to +80 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipecki, T.; Jamińska-Gadomska, P.; Sumorek, A. Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions. Sensors 2020, 20, 5640. https://doi.org/10.3390/s20195640
Lipecki T, Jamińska-Gadomska P, Sumorek A. Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions. Sensors. 2020; 20(19):5640. https://doi.org/10.3390/s20195640
Chicago/Turabian StyleLipecki, Tomasz, Paulina Jamińska-Gadomska, and Andrzej Sumorek. 2020. "Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions" Sensors 20, no. 19: 5640. https://doi.org/10.3390/s20195640
APA StyleLipecki, T., Jamińska-Gadomska, P., & Sumorek, A. (2020). Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions. Sensors, 20(19), 5640. https://doi.org/10.3390/s20195640