Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review
Abstract
:1. Pseudomonas aeruginosa Can Be Identified by a Unique Biomarker
2. Importance of Pyocyanin as Detection Target
2.1. Nonelectrochemical Techniques Used for Pyocyanin Detection
2.2. Basic Electrochemistry for Pyocyanin Studies
3. The Start of Electrochemical Pyocyanin Detection
4. Electrochemical Detection of Pyocyanin
4.1. Amplification of Pyocyanin Sensing
4.2. Simultaneous Profiling of PA Metabolites
4.3. Detection of Pyocyanin from Biofilms on Agar
4.4. Scanning Electrochemical Microscopy for Pyocyanin Investigation
5. Towards Clinical Applications
6. Pyocyanin Detection in Clinical Isolates
7. Future Directions
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Hall, S.; McDermott, C.; Anoopkumar-Dukie, S.; McFarland, A.J.; Forbes, A.; Perkins, A.V.; Davey, A.K.; Chess-Williams, R.; Kiefel, M.J.; Arora, D.; et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 2016, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Strateva, T.; Mitov, I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol. 2011, 61, 717–732. [Google Scholar] [CrossRef]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect. 2000, 2, 1051–1060. [Google Scholar] [CrossRef]
- Rada, B.; Leto, T.L. Pyocyanin effects on respiratory epithelium: Relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 2013, 21, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, G.W.; Hassett, D.J.; Ran, H.; Kong, F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 2004, 10, 599–606. [Google Scholar] [CrossRef]
- Dietrich, L.E.P.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D.K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321. [Google Scholar] [CrossRef]
- Cash, K.J.; Clark, H.A. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol. Med. 2010, 16, 584–593. [Google Scholar] [CrossRef]
- Sharp, D.; Gladstone, P.; Smith, R.B.; Forsythe, S.; Davis, J. Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 2010, 77, 114–119. [Google Scholar] [CrossRef]
- Amiri, M.; Bezaatpour, A.; Jafari, H.; Boukherroub, R.; Szunerits, S. Electrochemical methodologies for the detection of pathogens. ACS Sens. 2018, 3, 1069–1086. [Google Scholar] [CrossRef]
- McEachern, F.; Harvey, E.; Merle, G. Emerging technologies for the electrochemical detection of bacteria. Biotechnol. J. 2020, 15, e2000140. [Google Scholar] [CrossRef] [PubMed]
- Kuss, S.; Amin, H.M.A.; Compton, R.G. Electrochemical detection of pathogenic bacteria-recent strategies, advances and challenges. Chem. Asian J. 2018, 13, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Reyes, E.A.P.; Bale, M.J.; Cannon, W.H.; Matsen, J.M. Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clin. Microbiol. 1981, 13, 456–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.M.; Messenger, A.J. Occurence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol. 1986, 27, 211–275. [Google Scholar] [PubMed]
- Jayaseelan, S.; Ramaswamy, D. Pyocyanin: Production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 2014, 30, 1159–1168. [Google Scholar] [CrossRef]
- King, M.M.; Guragain, M.; Sarkisova, S.A.; Patrauchan, M.A. Pyocyanin extraction and quantitative analysis in swarming pseudomonas aeruginosa. Bio-Protocol 2016, 6, 1–10. Available online: www.bio-protocol.org/e2042 (accessed on 4 July 2020). [CrossRef]
- Frank, L.; DeMoss, R. On the biosynthesis of pyocyanine. J. Bacteriol. 1958, 77, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.; Macdermot, J.; Wilson, R.; Cole, P.J.; Taylor, G.W. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 1986, 313, 309–313. [Google Scholar] [CrossRef]
- Conference, I.; Sciences, M.; Penh, P. Production, extraction comparison of spectral analysis of pyocyanin diffusible pigment from pseudomonas aeruginosa. In Proceedings of the 2nd International Conference on Chemical, Biological and Medical Sciences (ICCBMS’2013), Phnom Penh, Cambodia, 25–26 September 2013; pp. 25–27. [Google Scholar]
- Wilson, R.; Sykes, D.A.; Watson, D.; Rutman, A.; Taylor, G.W.; Cole, P.J. Measurement of pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect. Immun. 1988, 56, 2515–2517. [Google Scholar] [CrossRef] [Green Version]
- Laxmi, M.; Bhat, S.G. Characterization of pyocyanin with radical scavenging and antibiofilm properties isolated from Pseudomonas aeruginosa strain BTRY1. 3 Biotech 2016, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bodelón, G.; Montes-garcía, V.; López-puente, V.; Hill, E.H.; Hamon, C.; Sanz-ortiz, M.N.; Rodal-cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-juste, I.; et al. Surface-enhanced resonance Raman scattering. Nat. Mater. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Polisetti, S.; Baig, N.F.; Morales-soto, N.; Shrout, J.D.; Bohn, P.W. Spatial mapping of pyocyanin in pseudomonas aeruginosa bacterial communities using surface enhanced raman scattering. Appl. Spectrosc. 2017, 71, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Chen, J.; Li, X. Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1863–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatraktchi, F.A.; Johansen, H.K.; Molin, S.; Svendsen, W.E. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine 2016, 11, 2185–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, J.; Simoska, O.; Karasik, S.; Shear, J.B.; Stevenson, K.J. Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin. Anal. Chem. 2017, 89, 6285–6289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatraktchi, F.A.; Noori, J.S.; Tanev, G.P.; Mortensen, J.; Dimaki, M.; Johansen, H.K.; Madsen, J.; Molin, S.; Svendsen, W.E. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa. PLoS ONE 2018, 13, e0194157. [Google Scholar] [CrossRef] [PubMed]
- Vukomanovic, D.V.; Brien, J.F.; van Loon, G.W.; Zoutman, D.E.; Marks, G.S.; Nakatsu, K. Analysis of pyocyanin from pseudomonas aeruginosa by adsorptive stripping voltammetry. J. Pharmacol. Toxicol. Methods 1996, 36, 97–102. [Google Scholar] [CrossRef]
- Bukelman, O.; Amara, N.; Mashiach, R.; Krief, P.; Meijler, M.M.; Alfonta, L. Electrochemical analysis of quorum sensing inhibition. Chem. Commun. 2009, 7345, 2836–2838. [Google Scholar] [CrossRef]
- Webster, T.A.; Sismaet, H.J.; Chan, I.J.; Goluch, E.D. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms. Analyst 2015, 140, 7195–7201. [Google Scholar] [CrossRef] [Green Version]
- Webster, T.A.; Sismaet, H.J.; Conte, J.L.; Chan, I.; Ping, J.; Goluch, E.D. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 2014, 60, 265–270. [Google Scholar] [CrossRef]
- Alatraktchi, F.A.; Andersen, S.B.; Johansen, H.K.; Molin, S.; Svendsen, W.E. Fast selective detection of pyocyanin using cyclic voltammetry. Sensors 2016, 16, 408. [Google Scholar] [CrossRef] [PubMed]
- Cernat, A.; Canciu, A.; Tertis, M.; Graur, F.; Cristea, C. Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin. Anal. Bioanal. Chem. 2019, 411, 3829–3838. [Google Scholar] [CrossRef] [PubMed]
- Alatraktchi, F.A.; Dimaki, M.; Støvring, N.; Johansen, H.K.; Molin, S.; Svendsen, W.E. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Anal. Biochem. 2020, 593, 113586. [Google Scholar] [CrossRef] [PubMed]
- Buzid, A.; Shang, F.; Reen, F.J.; Muimhneacháin, E.; Clarke, S.L.; Zhou, L.; Luong, J.H.T.; O’Gara, F.; McGlacken, G.P.; Glennon, J.D. Molecular signature of pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci. Rep. 2016, 6, 30001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhawaga, A.A.; Khalifa, M.M.; El-badawy, O.; Hassan, M.A.; El-Said, W.A. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS ONE 2019, 14, e0216438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarošová, R.; Mcclure, S.E.; Gajda, M.; Jović, M.; Girault, H.H.; Lesch, A.; Maiden, M.; Waters, C.; Swain, G.M. Inkjet-printed carbon nanotube electrodes for measuring pyocyanin and uric acid in a wound fluid simulant and culture media. Anal. Chem. 2019, 91, 8835–8844. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Y.Y.; Wang, Y.Z.; Zhang, C.L.; Wang, J.X.; Fang, Z.; Lv, H.; Zhong, J.J.; Yong, Y.C. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens. Bioelectron. 2017, 98, 338–344. [Google Scholar] [CrossRef]
- Kim, E.; Gordonov, T.; Bentley, W.E.; Payne, G.F. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor. Anal. Chem. 2013, 85, 2102–2108. [Google Scholar] [CrossRef]
- Santiveri, C.R.; Sismaet, H.J.; Kimani, M.; Goluch, E.D. Electrochemical detection of pseudomonas aeruginosa in polymicrobial environments. ChemistrySelect 2018, 3, 2926–2930. [Google Scholar] [CrossRef]
- Bellin, D.L.; Sakhtah, H.; Rosenstein, J.K.; Levine, P.M.; Thimot, J.; Emmett, K.; Dietrich, L.E.P.; Shepard, K.L. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sismaet, H.J.; Pinto, A.J.; Goluch, E.D. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens. Bioelectron. 2017, 97, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Burkitt, R.; Sharp, D. Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes. Electrochem. Commun. 2017, 78, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Ciui, B.; Tertiş, M.; Cernat, A.; Sǎndulescu, R.; Wang, J.; Cristea, C. Finger-based printed sensors integrated on a glove for on-site screening of pseudomonas aeruginosa virulence factors. Anal. Chem. 2018, 90, 7761–7768. [Google Scholar] [CrossRef]
- Sismaet, H.J.; Webster, T.A.; Goluch, E.D. Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa. Analyst 2014, 139, 4241. [Google Scholar] [CrossRef] [PubMed]
- Chincholkar, S.; Thomashow, L. Microbial Phenazines; Springer: Berlin, Germany, 2013; ISBN 978-3-642-40572-3. [Google Scholar]
- Mavrodi, D.V.; Peever, T.L.; Mavrodi, O.V.; Parejko, J.A.; Raaijmakers, J.M.; Lemanceau, P.; Mazurier, S.; Heide, L.; Blankenfeldt, W.; Weller, D.M.; et al. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 2010, 76, 866–879. [Google Scholar] [CrossRef] [Green Version]
- Buzid, A.; Reen, F.J.; Langsi, V.K.; Muimhneacháin, E.; O’Gara, F.; McGlacken, G.P.; Luong, J.H.T.; Glennon, J.D. Direct and rapid electrochemical detection of pseudomonas aeruginosa quorum signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem 2017, 4, 533–541. [Google Scholar] [CrossRef]
- Seviour, T.; Doyle, L.E.; Lauw, S.J.L.; Hinks, J.; Rice, S.A.; Nesatyy, V.J.; Webster, R.D.; Kjelleberg, S.; Marsili, E. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem. Commun. 2015, 51, 3789–3792. [Google Scholar] [CrossRef]
- Bellin, D.L.; Sakhtah, H.; Zhang, Y.; Price-Whelan, A.; Dietrich, L.E.P.; Shepard, K.L. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat. Commun. 2016, 7, 10535. [Google Scholar] [CrossRef] [Green Version]
- Simoska, O.; Sans, M.; Fitzpatrick, M.D.; Crittenden, C.M.; Eberlin, L.S.; Shear, J.B.; Stevenson, K.J. Real-time electrochemical detection of pseudomonas aeruginosa phenazine metabolites using transparent carbon ultramicroelectrode arrays. ACS Sens. 2019, 4, 170–179. [Google Scholar] [CrossRef]
- Simoska, O.; Sans, M.; Eberlin, L.S.; Shear, J.B.; Stevenson, K.J. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Biosens. Bioelectron. 2019, 142, 111538. [Google Scholar] [CrossRef]
- Ward, A.C.; Connolly, P.; Tucker, N.P. Pseudomonas aeruginosacan be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor. PLoS ONE 2014, 9, e91732. [Google Scholar] [CrossRef] [Green Version]
- Webster, T.A.; Sismaet, H.J.; Sattler, A.F.; Goluch, E.D. Improved monitoring of P. aeruginosa on agar plates. Anal. Methods 2015, 7, 7150–7155. [Google Scholar] [CrossRef]
- Koley, D.; Ramsey, M.M.; Bard, A.J.; Whiteley, M. Discovery of a bio fi lm electrocline using real-time 3D metabolite analysis. PNAS 2011, 108, 19996–20001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connell, J.L.; Kim, J.; Shear, J.B.; Bard, A.J.; Whiteley, M. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA 2014, 111, 18255–18260. [Google Scholar] [CrossRef] [Green Version]
- Stuart, B.; Lin, J.H.; Mogayzel, P.J. Early eradication of pseudomonas aeruginosa in patients with cystic fibrosis. Paediatr. Respir. Rev. 2010, 11, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, H.K.; Moskowitz, S.M.; Ciofu, O.; Pressler, T.; Høiby, N. Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J. Cyst. Fibros. 2008, 7, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Moore, J.; Murphy, P.; Millar, B.; Elborn, J. Early detection of Pseudomonas aeruginosa—comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann. Clin. Microbiol. Antimicrob. 2004, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, S.E.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Smith, E.; Rhoads, D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE 2008, 3, e3326. [Google Scholar] [CrossRef]
- Héry-Arnaud, G.; Nowak, E.; Caillon, J.; David, V.; Dirou, A.; Revert, K.; Munck, M.R.; Frachon, I.; Haloun, A.; Horeau-Langlard, D.; et al. Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: A prospective cohort study. Clin. Microbiol. Infect. 2017, 23, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, M.; Ramsey, B.W.; Gibson, R.L. Pseudomonas acquisition in young patients with cystic fibrosis: Pathophysiology, diagnosis, and management. Curr. Opin. Pulm. Med. 2003, 9, 492–497. [Google Scholar] [CrossRef]
- Spilker, T.; Coenye, T.; Vandamme, P.; Lipuma, J.J. PCR-Based Assay for differentiation of pseudomonas aeruginosa from other pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol. 2004, 42, 2074–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Fouly, M.Z.; Sharaf, A.M.; Shahin, A.A.M.; El-Bialy, H.A.; Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 2015, 8, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, F.Y.; Al-Shibib, A.S.; Khammas, K.M.; Taher, R. Pyocyanin preparation from Pseudomonas aeruginosa isolated from heterogeneous clinical materials. Folia Microbiol. (Praha) 1986, 31, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Micek, S.T.; Lloyd, A.E.; Ritchie, D.J.; Reichley, R.M.; Fraser, V.J.; Kollef, M.H. Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Am. Soc. Microbiol. 2005, 49, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Sismaet, H.J.; Banerjee, A.; McNish, S.; Choi, Y.; Torralba, M.; Lucas, S.; Chan, A.; Shanmugam, V.K.; Goluch, E.D. Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen. 2016, 24, 366–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Filho, L.V.R.F.; Ferreira, F.d.A.; Reis, F.J.C.; De Britto, M.C.A.; Levy, C.E.; Clark, O.; Ribeiro, J.D. Pseudomonas aeruginosa infection in patients with cystic fibrosis: Scientific evidence regarding clinical impact, diagnosis, and treatment. J. Bras. Pneumol. 2013, 39, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.S.; Egan, M.; Kazmierczak, B.I. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 2007, 19, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.; Shukla, S.; Petersson, A.C.; Segelmark, M.; Hellmark, T. Pseudomonas aeruginosa in cystic fibrosis: Pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. J. Cyst. Fibros. 2011, 10, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.; Høiby, N. Diagnosis and treatment of cystic fibrosis. Respiration 2000, 67, 239–247. [Google Scholar] [CrossRef]
- Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Høiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012, 10, 841–851. [Google Scholar] [CrossRef]
WE Material | Electrode Type/Fabrication | Technique | Electrolyte/Sample Matrix | Detection Potential | LOD [µM] | Linear Range [µM] | Ref |
---|---|---|---|---|---|---|---|
Gold | Screen printed | CV | Mixture of pyoverdine, NAD, NADH, NADP, NADPH, phenazine-C12H8N2, and Lysogeny Broth and Human saliva | +0.699 V vs. Ag | 2 | 2–100 | [32] |
Gold | Screen printed | Amp | Mixture of pyoverdine, NAD, NADH, NADP, NADPH and Lysogeny Broth and Artificial Sputum Medium | +0.82 V vs. Ag | - | 0.125–90 | [25] |
Gold | Integrated circuit sensing platform | SWV | Agar | −0.33 V vs. Ag/AgCl | 2.6 | - | [40] |
Gold coated nanograss | Deep reactive ion etching and E-beam deposition | Coulometry | Hypertonic saline and airway samples from cystic fibrosis patients | +0.533 V vs. Au | 0.172 | 0.313–25 | [41] |
Gold coated with a catechol-chitosan film | Electrodeposition and grafting redox-active catechols onto a chitosan film | DPV | Lysogeny broth | Approx. −0.25 V vs. Ag/AgCl | 0.050 | 0.050–40 | [39] |
Transparent carbon ultramicroelectrode arrays with chitosan gold nanoparticles Planar transparent macroelectrodes | Lithography | SWV | Lysogeny broth with sodium phosphate buffer | −0.245 V vs. SCE | 1.6 0.75 | 1–100 0.75–25 | [26] |
Carbon | Screen printed | SWV | Lysogeny Broth, urine, bronchial lavages, sputum and heparinized blood | Approx. −0.25 V vs. AgCl | 0.13–1.81 | 1–100 | [31] |
Carbon | Shadow printed | SWV | Lysogeny Broth | −0.55 V vs. Carbon | 0.095 | 1–40 | [27] |
Carbon | Screen printed | SWV | Trypticase soy broth | −0.25 V vs. Ag/AgCl | 0.038 | 0–100 | [42] |
Carbon | Screen printed | SWV | Agar-Au/Ag nanoalloy with human serum, whole blood, saliva | −0.3 V vs. Ag/AgCl | 0.04 | 0.12 to 25 | [33] |
Carbon | Pad printed | SWV | Britton–Robinson, Simulated wound fluid, Human serum | −0.2 V vs. Ag/AgCl | 0.15 0.087 0.169 | 0.336–10 0.336–20 0.183–20 | [43] |
Carbon | Printed on glove | SWV | Hydrogel | −0.5 V vs. Ag/AgCl | 3.33× 10−3 | 0.01–1 | [44] |
Carbon nanotubes | Ink-jet printed | SWV | Wound fluid simulant | −0.300 V vs. Ag/AgCl | 0.1 | 0.1–100 | [37] |
Carbon fiber | Tow | SWV | Britton–Robinson Buffer and P. aeruginosa Broth | −0.18 V vs. Ag/AgCl | 0.030 | 1–100 | [9] |
Graphite | Rod | DPV | Lysogeny Broth | −0.270 vs. Ag/AgCl | - | 1–71 | [29] |
Biofilm colonized carbon cloth | Shewanella oneidensis cells as the bioelectrocatalyst and lactate as electron donor | CV | Human serum, blood plasma, saliva spiked in mineral medium plus LB and electron donor (glucose/lactate) | −0.41 V vs. SCE | 4.7 × 10−5 | 0.0001–0.1 | [38] |
Boron-doped diamond | Rod | DPV | Acetate buffer, acetonitrile and spiked sputum | −0.15 V Ag/AgCl | 0.05 | 2–100 | [35] |
Mercury | Hanging drop | Adsorptive stripping voltammetry | Mueller–Hinton broth diluted in ammonia buffer | −0.17 V vs. Ag/AgCl | 2.0× 10−3 | 0.002–0.3 | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatraktchi, F.A.; Svendsen, W.E.; Molin, S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. Sensors 2020, 20, 5218. https://doi.org/10.3390/s20185218
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. Sensors. 2020; 20(18):5218. https://doi.org/10.3390/s20185218
Chicago/Turabian StyleAlatraktchi, Fatima AlZahra’a, Winnie E. Svendsen, and Søren Molin. 2020. "Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review" Sensors 20, no. 18: 5218. https://doi.org/10.3390/s20185218
APA StyleAlatraktchi, F. A., Svendsen, W. E., & Molin, S. (2020). Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. Sensors, 20(18), 5218. https://doi.org/10.3390/s20185218