Discovering Hidden Mental States in Open Multi-Agent Systems by Leveraging Multi-Protocol Regularities with Machine Learning
Abstract
:1. Introduction
2. Related Work
3. Formal Approach for Discovering Hidden Mental States in Multi-Agent Systems
3.1. Defining a Semantically Annotated Protocol
3.2. Obtaining Hidden Mental State Models with Machine Learning
3.3. Obtaining Training Data for Hidden Mental State Models
4. Leveraging Multi-Protocol Regularities for Hidden Mental State Models
4.1. Combining Complete Paths
4.2. Combining Partial Paths
4.3. Finding Logical Consequence in Mental States of Different Protocols
4.4. Using Hidden Mental State Models to Pseudo-Label Unknown Constraints
5. Case Study
5.1. Description of the Multi-Agent System
- buying: vhigh, high, med, low.
- maint: vhigh, high, med, low.
- doors: 2, 3, 4, 5, more.
- persons: 2, 4, more.
- lug_boot: small, med, big.
- safety: low, med, high.
5.2. Building the Training Data for Discovering Hidden Mental States
5.3. Learning a Hidden Mental State Model
5.4. Protocol Outcome Prediction Leveraging Hidden Mental States’ Information
5.5. Studying the Coherence of Hidden Mental State Models
5.6. Using an Argumentation Protocol to Analyze Negotiations
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Anand, P.; Navío-Marco, J. Governance and economics of smart cities: Opportunities and challenges. Telecommun. Policy 2018, 42, 795–799. [Google Scholar] [CrossRef] [Green Version]
- Bajo, J.; Campbell, A.T.; Omatu, S.; de Carvalho, A.C.P.L.F.; Corchado, J.M. Mobile sensing and social computing. Int. J. Distrib. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Bakar, N.A.; Selamat, A. Agent systems verification: Systematic literature review and mapping. Appl. Intell. 2018, 48, 1251–1274. [Google Scholar] [CrossRef]
- FIPA Contract Net Interaction Protocol Specification. SC00030; Foundation for Intelligent Physical Agents, 2002; Available online: http://www.fipa.org/ (accessed on 10 September 2020).
- Serrano, E.; Rovatsos, M.; Botia, J. An Approach for the Qualitative Analysis of Open Agent Conversations. In Proceedings of the Third International Workshop on Iinfraestructures and Tools for Multiagent Systems, ITMAS 2012, Valencia, Spain, 5 June 2012; pp. 79–92. [Google Scholar]
- Serrano, E.; Rovatsos, M.; Botia, J. A qualitative reputation system for multiagent systems with protocol-based communication. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12), Valencia, Spain, 4–8 June 2012; pp. 307–314. [Google Scholar]
- Serrano, E.; Rovatsos, M.; Botía, J.A. Data mining agent conversations: A qualitative approach to multiagent systems analysis. Inf. Sci. 2013, 230, 132–146. [Google Scholar] [CrossRef] [Green Version]
- FIPA Request Protocol Specification. SC00026; FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. FIPA Request Interaction Protocol; Available online: http://www.fipa.org/specs/fipa00026/SC00026H.html (accessed on 10 September 2020).
- Sudeikat, J.; Braubach, L.; Pokahr, A.; Lamersdorf, W.; Renz, W. Validation of BDI Agents. In Proceedings of the PROMAS’06, Hakodate, Japan, 8–12 May 2006; pp. 185–200. [Google Scholar]
- Collier, R.W. Debugging Agents in Agent Factory. In Proceedings of the PROMAS’06, Hakodate, Japan, 8–12 May 2006; pp. 229–248. [Google Scholar]
- Gómez-Sanz, J.J.; Botia, J.; Serrano, E.; Pavón, J. Testing and Debugging of MAS Interactions with INGENIAS. In Proceedings of the Ninth International Workshop on AGENT ORIENTED SOFTWARE ENGINEERING (AOSE’08), Estoril, Portugal, 12–13 May 2008; pp. 199–212. [Google Scholar]
- Fernández-Isabel, A.; Fuentes-Fernández, R.; Martín de Diego, I. Modeling multi-agent systems to simulate sensor-based Smart Roads. Simul. Model. Pract. Theory 2020, 99, 101994. [Google Scholar] [CrossRef]
- Lam, D.N.; Barber, K.S. Comprehending agent software. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, 25–29 July 2005; pp. 586–593. [Google Scholar]
- Ndumu, D.T.; Nwana, H.S.; Lee, L.C.; Collis, J.C. Visualising and debugging distributed multi-agent systems. In Proceedings of the 3rd International Conference on Autonomous Agents (AGENTS’99), Seattle, WA, USA, 1–5 May 1999; pp. 326–333. [Google Scholar]
- Padgham, L.; Winikoff, M.; Poutakidis, D. Adding debugging support to the Prometheus methodology. Eng. Appl. Artif. Intell. 2005, 18, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Paurobally, S. Developing agent interaction protocols using graphical and logical methodologies. In Proceedings of the PROMAS’03, Melbourne, Australia, 15 July 2003; pp. 149–168. [Google Scholar]
- Harel, D.; Politi, M. Modeling Reactive Systems with Statecharts: The Statemate Approach; McGraw-Hill, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Parunak, H.V.D. Visualizing Agent Conversations: Using Enhanced Dooley Graphs for Agent Design and Analysis. In Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03), Melbourne, Australia, 14–18 July 2003; pp. 275–282. [Google Scholar]
- Chopra, A.K.; Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. Reasoning about agents and protocols via goals and commitments. In Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10), Toronto, ON, Canada, 10–14 May 2010; pp. 457–464. [Google Scholar]
- Wooldridge, M.; Fisher, M.; Huget, M.P.; Parsons, S. Model checking multi-agent systems with MABLE. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02), Bologna, Italy, 15–19 July 2002; pp. 952–959. [Google Scholar]
- Dennis, L.A. The MCAPL Framework. Available online: https://zenodo.org/record/1237635#.X1oiE4sRVPY (accessed on 10 September 2020).
- Dennis, L.A.; Farwer, B.; Bordini, R.H.; Fisher, M. A flexible framework for verifying agent programs. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, 12–16 May 2008; pp. 1303–1306. [Google Scholar]
- Atencia, M.; Schorlemmer, W.M. I-SSA: Interaction-Situated Semantic Alignment. In Proceedings of the OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico, 9–14 November 2008; pp. 445–455. [Google Scholar]
- Besana, P.; Robertson, D. Probabilistic Dialogue Models for Dynamic Ontology Mapping. In Proceedings of the Fourth International Conference on Uncertainty Reasoning for the Semantic Web (URSW’08), Karlsruhe, Germany, 26 October 2008; pp. 41–51. [Google Scholar]
- Lv, Z.; Peng, R. A novel meta-matching approach for ontology alignment using grasshopper optimization. Knowl. Based Syst. 2020, 201–202, 106050. [Google Scholar] [CrossRef]
- Ancona, D.; Ferrando, A.; Mascardi, V. Parametric Runtime Verification of Multiagent Systems. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2017), São Paulo, Brazil, 8–12 May 2017; pp. 1457–1459. [Google Scholar]
- Ancona, D.; Ferrando, A.; Franceschini, L.; Mascardi, V. Parametric Trace Expressions for Runtime Verification of Java-Like Programs. In Proceedings of the 19th Workshop on Formal Techniques for Java-Like Programs, Barcelona, Spain, 20 June 2017; pp. 10:1–10:6. [Google Scholar]
- Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053. [Google Scholar] [CrossRef]
- Wang, M.; Yu, L.; Zheng, D.; Gan, Q.; Gai, Y.; Ye, Z.; Li, M.; Zhou, J.; Huang, Q.; Ma, C.; et al. Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. arXiv 2019, arXiv:cs.LG/1909.01315. [Google Scholar]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Xiao, Y.; Yang, X.; Liu, B. A new self-paced method for multiple instance boosting learning. Inf. Sci. 2020, 515, 80–90. [Google Scholar] [CrossRef]
- Gilani, S.; Quinn, C.; McArthur, J. A review of ontologies within the domain of smart and ongoing commissioning. Build. Environ. 2020, 107099. [Google Scholar] [CrossRef]
- Brickley, D.; Guha, R. RDF Vocabulary Description Language 1.0: RDF Schema. In W3C Recommendation; World Wide Web Consortium, 2004; Available online: https://www.w3.org/ (accessed on 10 September 2020).
- Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 Web Ontology Language Primer. In W3C Recommendation; World Wide Web Consortium, 2009; Available online: https://www.w3.org/ (accessed on 10 September 2020).
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML; W3C Member Submission, 2004; Available online: https://www.w3.org/Submission/SWRL/ (accessed on 10 September 2020).
- dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Unsupervised deep learning and semi-automatic data labeling in weed discrimination. Comput. Electron. Agric. 2019, 165, 104963. [Google Scholar] [CrossRef]
- Frank, A.; Asuncion, A. UCI Machine Learning Repository; Center for Machine Learning and Intelligent Systems at the University of California: Irvine, CA, USA, 2010. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Pintelas, E.G.; Livieris, I.E.; Pintelas, P.E. A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability. Algorithms 2020, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Molnar, C. Interpretable Machine Learning; 2018; Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 10 September 2020).
- Moustaka, V.; Theodosiou, Z.; Vakali, A.; Kounoudes, A. Smart Cities at Risk!: Privacy and Security Borderlines from Social Networking in Cities. In Proceedings of the World Wide Web Conference 2018 (WWW 2018), Lyon, France, 23–27 April 2018; pp. 905–910. [Google Scholar]
- de La Iglesia, D.H.; Villarrubia, G.; Paz, J.F.D.; Bajo, J. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm. Sensors 2017, 17, 2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, Â.; Rincon, J.A.; Carrascosa, C.; Novais, P.; Julián, V. Activities suggestion based on emotions in AAL environments. Artif. Intell. Med. 2018, 86, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Amador-Domínguez, E.; Serrano, E.; Manrique, D.; Paz, J.F.D. Prediction and Decision-Making in Intelligent Environments Supported by Knowledge Graphs, A Systematic Review. Sensors 2019, 19, 1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Negotiations | J48 | NNge | Bayes | Perceptron | Clustering |
---|---|---|---|---|---|
50 | 0.04 | 0.006 | 0.002 | 0.915 | 0.007 |
100 | 0.04 | 0.002 | 0.002 | 1748 | 0.002 |
250 | 0.001 | 0.013 | 0.002 | 4366 | 0.005 |
500 | 0.001 | 0.034 | 0.002 | 8737 | 0.008 |
750 | 0.003 | 0.063 | 0.002 | 13,035 | 0.012 |
1000 | 0.003 | 0.103 | 0.002 | 17,337 | 0.019 |
2000 | 0.006 | 0.36 | 0.002 | 35,048 | 0.042 |
3000 | 0.012 | 0.682 | 0.006 | 52,647 | 0.055 |
4000 | 0.024 | 1046 | 0.005 | 70,300 | 0.076 |
5000 | 0.019 | 1468 | 0.002 | 88,219 | 0.083 |
id | doors | persons | lug_boot | safety | buying | maint | outcome |
---|---|---|---|---|---|---|---|
1 | 2 | 2 | small | high | ? | ? | F |
2 | 2 | 2 | small | high | low | low | S |
3 | 3 | 4 | med | high | ? | ? | F |
4 | 3 | 4 | med | high | low | low | S |
5 | 5-more | more | big | low | med | med | N |
6 | 5-more | more | big | low | med | med | S |
7 | 5-more | more | med | high | low | low | N |
8 | 5-more | more | med | high | low | low | S |
Conversations | With Randomness | Without Randomness |
---|---|---|
1000 | 90% | 96% |
5000 | 95% | 99% |
10,000 | 95% | 99% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, E.; Bajo, J. Discovering Hidden Mental States in Open Multi-Agent Systems by Leveraging Multi-Protocol Regularities with Machine Learning. Sensors 2020, 20, 5198. https://doi.org/10.3390/s20185198
Serrano E, Bajo J. Discovering Hidden Mental States in Open Multi-Agent Systems by Leveraging Multi-Protocol Regularities with Machine Learning. Sensors. 2020; 20(18):5198. https://doi.org/10.3390/s20185198
Chicago/Turabian StyleSerrano, Emilio, and Javier Bajo. 2020. "Discovering Hidden Mental States in Open Multi-Agent Systems by Leveraging Multi-Protocol Regularities with Machine Learning" Sensors 20, no. 18: 5198. https://doi.org/10.3390/s20185198
APA StyleSerrano, E., & Bajo, J. (2020). Discovering Hidden Mental States in Open Multi-Agent Systems by Leveraging Multi-Protocol Regularities with Machine Learning. Sensors, 20(18), 5198. https://doi.org/10.3390/s20185198