Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Mold Fabrication
2.2. Microfluidic Chamber Fabrication
2.3. MSPRS Substrate Fabrication
2.4. Optical Setups and Data Analysis
3. Conceptual Approach to MSPRS
3.1. Surface Plasmon Resonance Overview
3.2. Kretschmann Design
3.3. Metal Thickness
3.4. Metal Surface Roughness
3.5. Metal Surface Curvature
4. Results and Discussion
4.1. MSPRS Design
4.2. MSPRS Anatomy
4.3. MSPRS Spectral Resonances–Classic Resonator
4.3.1. Core Diameter
4.3.2. Excitation Method Independence
4.4. MSPRS Spectral Resonances–Reproducibility and Selectivity
4.5. MSPRS Spectral Resonances–Case Studies
4.5.1. MSPRS Resonances–Case Series
4.5.2. MSPRS Resonances–Case Report
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brongersma, M.L.; Kik, P.G. Surface Plasmon Nanophotonics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Hayashi, S.; Okamoto, T. Plasmonics: Visit the past to know the future. J. Phys. D Appl. Phys. 2012, 45, 433001. [Google Scholar] [CrossRef]
- Barnes, W.L. Surface plasmon–polariton length scales: A route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 2006, 8, S87–S93. [Google Scholar] [CrossRef]
- Kittle, C. Plasmons, Polaritons, and Polarons. In Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988; Volume 111. [Google Scholar]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Maier, S.A. Excitation of Surface Plasmon Polaritons at Planar Interfaces. In Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [Green Version]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-Enhanced Optical Sensors: A Review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shan, F. Development and Application of Surface Plasmon Polaritons on Optical Amplification. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Surface Plasmon Resonance for Biosensing: A Mini-Review. Electromagnetics 2008, 28, 214–242. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Liu, Q.; Wu, J.; Tao, N. Mapping single-cell-substrate interactions by surface plasmon resonance microscopy. Langmuir 2012, 28, 13373–13379. [Google Scholar] [CrossRef] [PubMed]
- Yanase, Y.; Hiragun, T.; Kaneko, S.; Gould, H.; Greaves, M.; Hide, M. Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens. Bioelectron. 2010, 26, 674–681. [Google Scholar] [CrossRef]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef]
- Shi, L.; Sun, Q.; He, J.a.; Xu, H.; Liu, C.; Zhao, C.; Xu, Y.; Wu, C.; Xiang, J.; Gu, D.; et al. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Bio-Med. Mater. Eng. 2015, 26, S2207–S2216. [Google Scholar] [CrossRef] [Green Version]
- Wanstall, N.P.; Preist, T.W.; Tan, W.C.; Sobnack, M.B.; Sambles, J.R. Standing-wave surface-plasmon resonances with overhanging zero-order metal gratings. J. Opt. Soc. Am. A 1998, 15, 2869–2876. [Google Scholar] [CrossRef]
- Rochon, P.L.; Lévesque, L. Standing wave surface plasmon mediated forward and backward scattering. Opt. Express 2006, 14, 13050–13055. [Google Scholar] [CrossRef]
- Passian, A.; Lereu, A.L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T.L. Imaging standing surface plasmons by photon tunneling. Phys. Rev. B 2005, 71, 165418. [Google Scholar] [CrossRef]
- Kwak, E.S.; Henzie, J.; Chang, S.H.; Gray, S.K.; Schatz, G.C.; Odom, T.W. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 2005, 5, 1963–1967. [Google Scholar] [CrossRef]
- Li, J.; Xue, X.; Fan, Y.; Ma, L.; Zou, S.; Xie, Z.; Zhang, Z. Standing wave type localized surface plasmon resonance of multifold Ag nanorods. Nanotechnology 2019, 30, 055703. [Google Scholar] [CrossRef] [PubMed]
- Amarie, D.; Onuta, T.D.; Potyrailo, R.A.; Dragnea, B. Submicrometer cavity surface plasmon sensors. J. Phys. Chem. B 2005, 109, 15515–15519. [Google Scholar] [CrossRef] [PubMed]
- Amarie, D.; Alileche, A.; Dragnea, B.; Glazier, J.A. Microfluidics Devices Integrating Microcavity Surface-Plasmon-Resonance Biosensors: Glucose Oxidase Binding Activity Detection. Anal. Chem. 2010, 82, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarie, D.; Glazier, J.A. Label-Free Microcavity Biosensors: Steps toward Facilitate Personalized Medicine. Sensors 2012, 12, 17262–17294. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Probst, P.T.; Goßler, F.R.; Steiner, A.M.; Schubert, J.; Brasse, Y.; König, T.A.F.; Fery, A. Interfaces Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Appl. Mater. Interfaces 2019, 11, 28189–28196. [Google Scholar] [CrossRef] [Green Version]
- VWR® International. Vistavision Microscope Slides and Cover Glass. Vol. 1215 Lit. No. 931436W. 2019. Available online: https://us.vwr.com/assetsvc/asset/en_US/id/12162177/contents (accessed on 4 January 2020).
- Material Properties of Polystyrene and Poly(methyl methacrylate) (PMMA) Microspheres. In Tech Support Doc. 0021; Bangs Laboratories, Inc.: Fishers, IN, USA, 2015; Available online: https://www.bangslabs.com/material-properties-polystyrene-and-polymethyl-methacrylate-pmma-microspheres (accessed on 12 September 2019).
- Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484–588. [Google Scholar] [CrossRef]
- Drude, P. Zur Elektronentheorie der Metalle. Ann. Der Phys. 1900, 306, 566–613. [Google Scholar] [CrossRef] [Green Version]
- Löfås, S.; Johnsson, B. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 1990, 19, 1526–1528. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative Decay of Nonradiative Surface Plasmons Excited by Light. Z. FÜR Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Mosavian, N. Microcavity Surface Plasmon Resonance Bio-Sensors. Master’s Thesis, Indiana University-Bloomington, Bloomington, IN, USA, August 2016. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Werner, W.S.M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Olmon, R.L.; Slovick, B.; Johnson, T.W.; Shelton, D.; Oh, S.-H.; Boreman, G.D.; Raschke, M.B. Optical dielectric function of gold. Phys. Rev. B 2012, 86, 235147. [Google Scholar] [CrossRef] [Green Version]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres. Plasmonics 2016, 11, 941–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perner, M.; Bost, P.; Lemmer, U.; Plessen, G.v.; Feldmann, J.; Becker, U.; Mennig, M.; Schmitt, M.; Schmidt, H. Optically Induced Damping of the Surface Plasmon Resonance in Gold Colloids. Phys. Rev. Lett. 1997, 78, 2192–2195. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Economu, E.N. Surface Plasmons in Thin Films. Phys. Rev. 1969, 182, 539–554. [Google Scholar] [CrossRef]
- Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B 2000, 61, 10484–10503. [Google Scholar] [CrossRef]
- Fedyanin, D.Y.; Arsenin, A.V.; Leiman, V.G.; Gladun, A.D. Backward waves in planar insulator–metal–insulator waveguide structures. J. Opt. 2010, 12, 1–7. [Google Scholar] [CrossRef]
- Berini, P. Plasmon–polariton modes guided by a metal film of finite width. Opt. Lett. 1999, 24, 1011–1013. [Google Scholar] [CrossRef]
- Kretschmann, E. The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Opt. Commun. 1972, 5, 331–336. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Kinsbron, E.; Bacon, D.D. Optical properties of Au: Sample effects. Phys. Rev. B 1980, 21, 3290–3299. [Google Scholar] [CrossRef]
- Farias, G.A.; Maradudin, A.A. Effect of surface roughness on the attenuation of surface polaritons on metal films. Phys. Rev. B 1983, 27, 7093–7106. [Google Scholar] [CrossRef]
- Kuester, E.F.; Chang, D.C. Surface-Wave Radiation Loss from Curved Dielectric Slabs and Fibers. IEEE J. Quantum Electron. 1975, 11, 903–907. [Google Scholar] [CrossRef]
- Xiao, T.-H.; Gan, L.; Li, Z.-Y. Graphene surface plasmon polaritons transport on curved substrates. Photonics Res. 2015, 3, 300–307. [Google Scholar] [CrossRef]
- Charbonneau, R.; Scales, C.; Breukelaar, I.; Fafard, S.; Lahoud, N.; Mattiussi, G.; Berini, P. Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons. J. Lightw. Technol. 2006, 24, 477–494. [Google Scholar] [CrossRef]
- Berini, P.; Lu, J. Curved long-range surface plasmon-polariton waveguides. Opt. Express 2006, 14, 2365–2371. [Google Scholar] [CrossRef]
- Schasfoort, R.B.M. Handbook of Surface Plasmon Resonance, 2nd ed.; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Švorčík, V.; Kvítek, O.; Lyutakov, O.; Siegel, J.; Kolská, Z. Annealing of sputtered gold nano-structures. Appl. Phys. A 2010, 102, 747–751. [Google Scholar] [CrossRef]
- Rossing, T.D. Acoustics of percussion instruments—Part II. Phys. Teach. 1977, 15, 278–288. [Google Scholar] [CrossRef]
- Kalnins, A. On Vibrations of Shallow Spherical Shells. J. Acoust. Soc. Am. 1961, 33, 1102–1107. [Google Scholar] [CrossRef]
- Baker, W.E. Axisymmetric modes of vibration of thin spherical shell. J. Acoust. Soc. Am. 1961, 33, 1749–1758. [Google Scholar] [CrossRef]
- Singh, A.V.; Mirza, S. Asymmetric Modes and Associated Eigenvalues for Spherical Shells. J. Press. Vessel Technol. 1985, 107, 77–82. [Google Scholar] [CrossRef]
- Xie, K.; Chen, M.; Li, Z. A semi-analytical method for vibration analysis of thin spherical shells with elastic boundary conditions. J. Vibroeng. 2017, 19, 2312–2330. [Google Scholar] [CrossRef] [Green Version]
- Amarie, D.; Rawlinson, N.D.; Schaich, W.L.; Dragnea, B.; Jacobson, S.C. Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures. Nano Lett. 2005, 5, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, G.I.; Wallis, R.F.; Maradudin, A.A. Excitation of surface polaritons by end-fire coupling. Opt. Lett. 1983, 8, 386–388. [Google Scholar] [CrossRef]
- Charbonneau, R.; Berini, P.; Berolo, E.; Lisicka-Shrzek, E. Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt. Lett. 2000, 25, 844–846. [Google Scholar] [CrossRef]
- Fisher, C.; Botten, L.C.; Poulton, C.G.; McPhedran, R.C.; Sterke, C.M.D. End-fire coupling efficiencies of surface plasmons for silver, gold, and plasmonic nitride compounds. J. Opt. Soc. Am. B 2016, 33, 1044–1054. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, G.L.; Kim, J.; Mejia, Y.X.; Lee, L.P. Nanophotonic Crescent Moon Structures with Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field Enhancement Effect. Nano Lett. 2005, 5, 119–124. [Google Scholar] [CrossRef]
Parameters (nm) | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
mean | 766 | 902 | 484 | 204 | 20 | 1668 | 2241 | 180 |
SD 1 | 17 | 6 | 14 | 17 | 6 | 15 | 43 | 7 |
Core Size (nm) | 356 ± 14 | 477 ± 10 | 780 ± 6 | |||
Peak Index | II | II | III | II | III | IV |
Resonance Index | 1st | 1st | 2nd | 1st | 2nd | 3rd |
(nm) | ~591 | ~595 | ~645 | ~568 | ~595 | ~648 |
(nm) | ~588 | ~562 | ~620 | ~528 | ~562 | ~623 |
M | 5 | 7 | 6 | 8 | 7 | 6 |
L (nm) | ~1395 | ~1967 | ~1860 | ~2112 | ~1967 | ~1869 |
G (nm) | 1588 ± 30 | 2110 ± 40 | 2241 ± 43 |
Core Size (nm) | 780 ± 6 | |||
Interface | air/Au | water/Au | ||
Peak Index | II | IV | II | IV |
Resonance Index | 1st | 3rd | 1st | 3rd |
(nm) | 573.2 ± 1.3 | 649.6 ± 2.3 | 588.9 ± 2.3 | 654.5 ± 1.7 |
(nm) | 535.3 ± 1.5 | 624.6 ± 2.3 | 395.3 + 1.9 | 457.8 ± 1.3 |
Harmonic Index | 8 | 11 | 6 | 8 |
L (nm) | 2141 ± 12 | 1874 ± 14 | 2174 ± 21 | 1831 ± 11 |
G (nm) | 2241 ± 43 |
II vs. III | III vs. IV |
---|---|
Sensor Type | RP-MSPRS | UP-MSPRS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C (nm) | 805 ± 29 | 800 ± 29 | ||||||||||
J (nm) | 211 ± 12 | 399 ± 30 | ||||||||||
Interface | air/Au | water/Au | air/Au | water/Au | ||||||||
Peak Index | II | III | IV | II | III | IV | II | III | IV | II | III | IV |
Resonance Index | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd |
(nm) | 582.8 ± 0.3 | 613.8 ± 0.4 | 667.3 ± 0.2 | 596.3 ± 0.2 | 646.1 ± 1.8 | 677.2 ± 0.3 | 590.9 ± 0.3 | 621.0 ± 1.3 | 656.1 ± 1.7 | 591.4 ± 0.3 | 623.8 ± 1.6 | 688.4 ± 14 |
(nm) | 547.3 ± 0.4 | 584.3 ± 0.4 | 644.0 ± 0.2 | 403.0 ± 0.3 | 450.3 ± 1.9 | 477.6 ± 0.3 | 545.0 ± 0.4 | 592.6 ± 1.4 | 631.7 ± 1.6 | 398.0 ± 0.4 | 429.9 ± 1.6 | 487.1 ± 13 |
Harmonic Index | 8 | 7 | 6 | 11 | 9 | 8 | 8 | 8 | 7 | 11 | 11 | 9 |
L (nm) | 2190 ± 3 | 2045 ± 3 | 1932 ± 1 | 2217 ± 3 | 2026 ± 17 | 1932 ± 3 | 2180 ± 3 | 2370 ± 11 | 2211 ± 11 | 2189 ± 3 | 2364 ± 18 | 2192 ± 117 |
G − 2J (nm) | 1992 ± 53 | 2097 ± 118 | ||||||||||
G (nm) | 2414 ± 29 | 2895 ± 58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amarie, D.; Mosavian, N.; Waters, E.L.; Stupack, D.G. Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors. Sensors 2020, 20, 4906. https://doi.org/10.3390/s20174906
Amarie D, Mosavian N, Waters EL, Stupack DG. Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors. Sensors. 2020; 20(17):4906. https://doi.org/10.3390/s20174906
Chicago/Turabian StyleAmarie, Dragos, Nazanin Mosavian, Elijah L. Waters, and Dwayne G. Stupack. 2020. "Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors" Sensors 20, no. 17: 4906. https://doi.org/10.3390/s20174906
APA StyleAmarie, D., Mosavian, N., Waters, E. L., & Stupack, D. G. (2020). Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors. Sensors, 20(17), 4906. https://doi.org/10.3390/s20174906