Next Article in Journal
The Fault Tolerant Control Design of an Intensified Heat-Exchanger/Reactor Using a Two-Layer, Multiple-Model Structure
Next Article in Special Issue
Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range
Previous Article in Journal
A Hybrid Approach for Turning Intention Prediction Based on Time Series Forecasting and Deep Learning
Previous Article in Special Issue
One-Step Assembly of Fluorescence-Based Cyanide Sensors from Inexpensive, Off-The-Shelf Materials
Article

Dual Oxygen and Temperature Luminescence Learning Sensor with Parallel Inference

1
Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland
2
TOELT LLC, Birchlenstrasse 25, 8600 Dübendorf, Switzerland
3
School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(17), 4886; https://doi.org/10.3390/s20174886
Received: 12 August 2020 / Revised: 25 August 2020 / Accepted: 26 August 2020 / Published: 28 August 2020
(This article belongs to the Special Issue Optical and Photonic Sensors)
A well-known approach to the optical measure of oxygen is based on the quenching of luminescence by molecular oxygen. The main challenge for this measuring method is the determination of an accurate mathematical model for the sensor response. The reason is the dependence of the sensor signal from multiple parameters (like oxygen concentration and temperature), which are cross interfering in a sensor-specific way. The common solution is to measure the different parameters separately, for example, with different sensors. Then, an approximate model is developed where these effects are parametrized ad hoc. In this work, we describe a new approach for the development of a learning sensor with parallel inference that overcomes all these difficulties. With this approach we show how to generate automatically and autonomously a very large dataset of measurements and how to use it for the training of the proposed neural-network-based signal processing. Furthermore, we demonstrate how the sensor exploits the cross-sensitivity of multiple parameters to extract them from a single set of optical measurements without any a priori mathematical model with unprecedented accuracy. Finally, we propose a completely new metric to characterize the performance of neural-network-based sensors, the Error Limited Accuracy. In general, the methods described here are not limited to oxygen and temperature sensing. They can be similarly applied for the sensing with multiple luminophores, whenever the underlying mathematical model is not known or too complex. View Full-Text
Keywords: artificial intelligence; neural network; machine learning; oxygen sensor; luminescence; optical sensor; luminescence quenching; phase fluorimetry artificial intelligence; neural network; machine learning; oxygen sensor; luminescence; optical sensor; luminescence quenching; phase fluorimetry
Show Figures

Figure 1

MDPI and ACS Style

Venturini, F.; Michelucci, U.; Baumgartner, M. Dual Oxygen and Temperature Luminescence Learning Sensor with Parallel Inference. Sensors 2020, 20, 4886. https://doi.org/10.3390/s20174886

AMA Style

Venturini F, Michelucci U, Baumgartner M. Dual Oxygen and Temperature Luminescence Learning Sensor with Parallel Inference. Sensors. 2020; 20(17):4886. https://doi.org/10.3390/s20174886

Chicago/Turabian Style

Venturini, Francesca, Umberto Michelucci, and Michael Baumgartner. 2020. "Dual Oxygen and Temperature Luminescence Learning Sensor with Parallel Inference" Sensors 20, no. 17: 4886. https://doi.org/10.3390/s20174886

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop