The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Plants
2.2. Data Collection
2.3. Data Processing
2.3.1. Pre-Processing
Pre-Processing of the FieldSpec 3 Data
Pre-Processing of the Hyperspectral Images
Outlier Removal and Data Cleaning
2.3.2. Partial Least Square Regression
3. Results and Discussion
3.1. A Hyperspectral Camera with a Proper System Setup Can Provide Comparable Accuracy in N Measurement to a Non-Imaging Spectrometer with Contact Measurement
3.2. InGaAs or MCT Photonic Detectors are More Sensitive to N Content in Wheat Leaves than CCD or CMOS Detectors
3.3. N Content can be Measured at Reduced Spectral Resolutions
3.4. Wavelengths most Correlated to N Content in Wheat
3.5. Cross-Sensor Validation
3.6. Vegetation Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Wheat Plants | Description |
---|---|
Gladius | Waxy leaves, performs well under drought stress |
Axe | No-waxy gladius, very early maturing, performing best when suffering from drought stress |
Scepter | Greenest of Wyalkatchem, one of the most widely-grown wheat varieties in southern Australia |
Corack | Pale coloured Wyalkatchem, very high and stable grain yield |
Yitpi | Longer maturity, Western Australian industry standard for early sowing |
Items | No. |
---|---|
Laboratory analysis error of N % | 42 |
Outliers of N% | 8 |
Leaves fell out of the leaf-beds | 3 |
Green plant segmentation error | 2 |
Hyperspectral image error | 2 |
Total valid samples | 543 |
Total samples | 600 |
References
- AgriFutures, Wheat. 2017. Available online: https://www.agrifutures.com.au/farm-diversity/wheat/ (accessed on 10 March 2020).
- Marschner, H.; Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier Academic Press: London, UK; Waltham, MA, USA, 2012. [Google Scholar]
- Rakshit, A. Nutrient Use Efficiency; Springer: New Delhi, India, 2015. [Google Scholar]
- Bruning, B.; Liu, H.; Brien, C.; Berger, B.; Lewis, M.; Garnett, T. The Development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Front. Plant Sci. 2019, 10, 1380. [Google Scholar] [CrossRef]
- Bruning, B.; Berger, B.; Lewis, M.; Liu, H.; Garnett, T. Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield-limiting factors in wheat. Plant Phenome J. 2020. [Google Scholar] [CrossRef]
- Liu, H.; Bruning, B.; Garnett, T.; Berger, B. Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing. Comput. Electron. Agric. 2020, 175, 105621. [Google Scholar] [CrossRef]
- Katrašnik, J.; Bürmen, M.; Pernuš, F.; Likar, B. Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems. Chemom. Intell. Lab. Syst. 2010, 101, 23–29. [Google Scholar] [CrossRef]
- Ecarnot, M.; Compan, F.; Roumet, P. Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer. Field Crops Res. 2013, 140, 44–50. [Google Scholar] [CrossRef]
- Silva-Pérez, V.; Molero, G.; Serbin, S.P.; Condon, A.G.; Reynolds, M.P.; Furbank, R.T.; Evans, J.R. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 2017, 69, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Du, Y.; Zhou, J.; Wang, D.; Luo, M.; Zhang, Y.; Guo, W. Analysis of Different Hyperspectral Variables for Diagnosing Leaf Nitrogen Accumulation in Wheat. Front. Plant Sci. 2018, 9, 674. [Google Scholar] [CrossRef]
- Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; McIntyre, L.M.; Leakey, A.D.; Ainsworth, E.A. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance. Plant Physiol. 2016, 173, 614–626. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.; Raines, C.; et al. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sens. Environ. 2019, 231, 111176. [Google Scholar] [CrossRef]
- Rabatel, G.; Al Makdessi, N.; Ecarnot, M.; Roumet, P. A spectral correction method for multi-scattering effects in close range hyperspectral imagery of vegetation scenes: Application to nitrogen content assessment in wheat. Adv. Anim. Biosci. 2017, 8, 353–358. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Zhao, Y.-R.; Li, X.-L.; Shao, Y.-N.; Liu, F.; He, Y. Hyperspectral Imaging for Mapping of Total Nitrogen Spatial Distribution in Pepper Plant. PLoS ONE 2014, 9, e116205. [Google Scholar] [CrossRef] [PubMed]
- Camino, C.; Gonzalez-Dugo, V.; Hernández, P.; Sillero, J.C.; Zarco-Tejada, P.J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 105–117. [Google Scholar] [CrossRef]
- Axelsson, C.; Skidmore, A.K.; Schlerf, M.; Fauzi, A.; Verhoef, W. Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. Int. J. Remote Sens. 2012, 34, 1724–1743. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Zarco-Tejada, P.J.; López-Herrera, P.J.; Pérez-Martín, E.; Alonso-Ayuso, M.; Quemada, H.D. Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosyst. Eng. 2017, 160, 124–133. [Google Scholar] [CrossRef]
- Brien, C. Dae: Functions Useful in the Design and ANOVA of Experiments. Version 3.0-32. 2019. Available online: https://cran.r-project.org/package=dae (accessed on 9 October 2019).
- Python. Python. 2020. Available online: https://www.python.org/ (accessed on 5 January 2020).
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef]
- Liu, H.; Bruning, B.; Berger, B.; Garnett, T. Green plant segmentation in hyperspectral images using SVM and hyper-hue. In Proceedings of the 7th Edition of the International Workshop on Image Analysis Methods for the Plant Sciences, Lyon, France, 4–5 July 2019; pp. 35–36. Available online: http://liris.univ-lyon2.fr/IAMPS2019/proceedings/proceedings_IAMPS_2019.pdf (accessed on 21 January 2020).
- Liu, H.; Lee, S.-H.; Chahl, J.S. Transformation of a high-dimensional color space for material classification. J. Opt. Soc. Am. A 2017, 34, 523. [Google Scholar] [CrossRef]
- Liu, H.; Chahl, J.S. A multispectral machine vision system for invertebrate detection on green leaves. Comput. Electron. Agric. 2018, 150, 279–288. [Google Scholar] [CrossRef]
- SpectralPython. Band Resampling. 2020. Available online: http://www.spectralpython.net/algorithms.html#band-resampling (accessed on 20 March 2020).
- Gong, P.; Pu, R.; Heald, R.C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002, 23, 1827–1850. [Google Scholar] [CrossRef]
- Kim, Y.; Glenn, M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 2011, 77, 155–160. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.; Sankaran, S. High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Prot. 2019, 125, 104885. [Google Scholar] [CrossRef]
- Asaari, M.S.M.; Mishra, P.; Mertens, S.; Dhondt, S.; Inze, D.; Wuyts, N.; Scheunders, P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J. Photogramm. Remote Sens. 2018, 138, 121–138. [Google Scholar] [CrossRef]
- Jay, S.; Bendoula, R.; Hadoux, X.; Féret, J.-B.; Gorretta, N. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens. Environ. 2016, 177, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Martin, R.E. Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sens. Environ. 2008, 112, 3958–3970. [Google Scholar] [CrossRef]
- Vigneau, N.; Ecarnot, M.; Rabatel, G.; Roumet, P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 2011, 122, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Liu, H.; Lee, S.-H.; Chahl, J.S. Registration of multispectral 3D points for plant inspection. Precis. Agric. 2017, 19, 513–536. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Moghimi, A.; Yang, C.; Marchetto, P.M. Ensemble Feature Selection for Plant Phenotyping: A Journey From Hyperspectral to Multispectral Imaging. IEEE Access 2018, 6, 56870–56884. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Zur, Y.; Gitelson, A.; Chivkunova, O.; Merzlyak, M. The spectral contribuiton of carotenoids to light absorption and reflectance in green leaves. In Proceedings of the 2nd International Conference Geospatial Information in Agriculture and Forestry, Buena Vista, FL, USA, 10–12 January 2000; pp. 1–7. Available online: https://digitalcommons.unl.edu/natrespapers/272/?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages (accessed on 21 March 2020).
- Mahajan, G.; Pandey, R.N.; Sahoo, R.N.; Gupta, V.K.; Datta, S.C.; Kumar, D. Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis. Agric. 2016, 18, 736–761. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Ray, S.S.; Manjunath, K.R. Hyperspectral remote sensing of agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Abdi, H.; Valentin, D.; Edelman, B.; Abdi, H.; Valentin, D.E.B. Neural Networks; Sage Publications Inc.: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Shibayama, M.; Takahashi, W.; Morinaga, S.; Akiyama, T. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sens. Environ. 1993, 45, 117–126. [Google Scholar] [CrossRef]
Different Spectral Bands and VI | ASD FieldSpec 3 | FX10 + SWIR | FX10 | |||||
---|---|---|---|---|---|---|---|---|
FULL | SWIR | VNIR | FULL | SWIR | VNIR | VNIR | ||
Spectral band re-sampling with evenly distributed wavelength centres and bandwidths | No transformation | 0.86 | 0.84 | 0.75 | 0.77 | 0.76 | 0.71 | 0.76 |
FWHM = 10 nm | 0.84 | 0.85 | 0.74 | 0.78 | 0.76 | 0.71 | 0.76 | |
FWHM = 20 nm | 0.86 | 0.86 | 0.74 | 0.78 | 0.74 | 0.71 | 0.77 | |
FWHM = 30 nm | 0.85 | 0.86 | 0.73 | 0.77 | 0.76 | 0.68 | 0.73 | |
FWHM = 40 nm | 0.85 | 0.84 | 0.69 | 0.77 | 0.74 | 0.68 | 0.69 | |
FWHM = 50 nm | 0.86 | 0.84 | 0.66 | 0.76 | 0.74 | 0.66 | 0.70 | |
FWHM = 60 nm | 0.85 | 0.84 | 0.66 | 0.75 | 0.69 | 0.65 | 0.68 | |
FWHM = 70 nm | 0.84 | 0.84 | 0.60 | 0.73 | 0.72 | 0.64 | 0.67 | |
FWHM = 80 nm | 0.84 | 0.84 | 0.61 | 0.72 | 0.71 | 0.64 | 0.66 | |
FWHM = 90 nm | 0.80 | 0.76 | 0.61 | 0.73 | 0.68 | 0.64 | 0.65 | |
FWHM = 100 nm | 0.74 | 0.82 | 0.62 | 0.67 | 0.70 | 0.62 | 0.66 | |
Spectral band re-sampling using the key-wavelengths with narrow or broad bandwidths | Top 26 NB | 0.86 | N/A | N/A | 0.77 | N/A | N/A | N/A |
Top 26 BB | 0.84 | N/A | N/A | 0.76 | N/A | N/A | N/A | |
Top 20 NB | 0.85 | N/A | N/A | 0.77 | N/A | N/A | N/A | |
Top 20 BB | 0.84 | N/A | N/A | 0.75 | N/A | N/A | N/A | |
Top 16 NB | 0.85 | 0.83 | N/A | 0.76 | 0.76 | N/A | N/A | |
Top 16 BB | 0.81 | 0.82 | N/A | 0.74 | 0.74 | N/A | N/A | |
Top 10 NB | 0.78 | 0.83 | 0.70 | 0.66 | 0.68 | 0.69 | 0.72 | |
Top 10 BB | 0.64 | 0.78 | 0.69 | 0.62 | 0.66 | 0.69 | 0.72 | |
Top 5 NB | 0.64 | 0.64 | 0.69 | 0.60 | 0.61 | 0.65 | 0.72 | |
Top 5 BB | 0.44 | 0.43 | 0.67 | 0.48 | 0.48 | 0.57 | 0.71 | |
VI (λ1, λ2…λn) | NREAI | N/A | N/A | 0.55 | N/A | N/A | N/A | N/A |
NDVI (1696, 729) | 0.53 | N/A | N/A | N/A | N/A | N/A | N/A | |
NDVI (519, 582) | N/A | N/A | 0.53 | N/A | N/A | N/A | N/A | |
NDVI (1672, 1647) | N/A | 0.44 | N/A | N/A | N/A | N/A | N/A |
Order | PLSR Coefficient | Key-Wavelength (nm) | Physiological, Biochemical and Nutritional Traits Relate to the Key-Wavelengths (± 25 nm) |
---|---|---|---|
26 | 0.043 | 456 | 460 nm relates to chlorophyll a,b and electron transition [35]. |
25 | 0.045 | 482 | 495 nm is the longer wavelength portion of the blue band; crop-to-soil reflectance ratio is minima for blue and green bands [37]. |
6 | 0.137 | 505 | 520 nm is mainly influenced by leaf pigments, such as chlorophyll or carotenoids [38]. |
13 | 0.085 | 569 | 540 nm to 550 nm is the peak of the green band and the maximum first-order derivative in the visible spectrum [37]. |
15 | 0.075 | 646 | 660 nm relates to N [39]. |
8 | 0.122 | 676 | 670 nm relates to electron transition and chlorophyll a,b [35]. |
7 | 0.133 | 690 | 668 nm to 696 nm is chlorophyll absorption maxima [37]. |
18 | 0.070 | 708 | In the red-edge range in which the slope and position are salient features to distinguish vigorous plants from others [37,40]. |
16 (17) | 0.074 | 740 | |
20 | 0.059 | 892 | 845 nm is NIR shoulder; 920 nm is the peak of NIR [41]; 910 nm relates to C-H stretch and protein [35]. |
23 | 0.054 | 1003 | 1020 nm relates to N-H stretch and protein [35]. |
10 | 0.096 | 1210 | Not previously reported. |
19 | 0.061 | 1307 | Not previously reported. |
22 | 0.055 | 1366 | Not previously reported. |
9 | 0.106 | 1395 | Not previously reported. |
24 | 0.054 | 1517 | 1510 nm relates to N-H stretch, protein and N [35,39]. |
17 (16) | 0.074 | 1590 | Not previously reported. |
4 | 0.148 | 1686 | 1690 nm relates to C-H stretch, protein and N [35]. |
12 | 0.087 | 1739 | Not previously reported. |
5 | 0.145 | 1800 | Not previously reported. |
11 | 0.092 | 1876 | 1900 nm relates to O-H stretch [35]. |
21 | 0.059 | 1943 | 1940 nm relates to N-H deformation, protein and N [35]. |
14 | 0.083 | 2046 | 2060 nm relates to N-H bend, protein and N [35]. |
3 | 0.205 | 2106 | 2130 nm relates to N-H stretch and protein [35]. |
1 | 0.297 | 2180 | 2180 nm relates to N-H bend, protein and N [35]. |
2 | 0.217 | 2313 | 2300 nm relates to N-H stretch, protein and N [35]. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Bruning, B.; Garnett, T.; Berger, B. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat. Sensors 2020, 20, 4550. https://doi.org/10.3390/s20164550
Liu H, Bruning B, Garnett T, Berger B. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat. Sensors. 2020; 20(16):4550. https://doi.org/10.3390/s20164550
Chicago/Turabian StyleLiu, Huajian, Brooke Bruning, Trevor Garnett, and Bettina Berger. 2020. "The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat" Sensors 20, no. 16: 4550. https://doi.org/10.3390/s20164550
APA StyleLiu, H., Bruning, B., Garnett, T., & Berger, B. (2020). The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat. Sensors, 20(16), 4550. https://doi.org/10.3390/s20164550