GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue–Violet Wavelength Region
Abstract
:1. Introduction
2. Operation for RI Sensing
3. Experimental Procedure
3.1. Fabrication of GaN High-Contrast Grating
3.2. Optical Irradiation System
3.3. FDTD Field Calculation Model and Calculation Conditions
4. Results and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuators B Chem. 2014, 195, 332–351. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Hale, Z.M.; Payne, F.P.; Marks, R.S.; Lowe, C.R.; Levine, M.M. The single mode tapered optical fiber loop immunosensor. Biosens. Bioelectron. 1996, 11, 137–148. [Google Scholar] [CrossRef]
- Park, Y.; Diez-Silva, M.; Popescu, G.; Lykotrafitis, G.; Choi, W.; Feld, M.S.; Suresh, S. Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2008, 105, 13730–13735. [Google Scholar] [CrossRef] [Green Version]
- Angulo Barrios, C. An Analysis of a Compact Label-Free Guiding-Wave Biosensor Based on a Semiconductor-Clad Dielectric Strip Waveguide. Sensors 2020, 20, 3368. [Google Scholar] [CrossRef]
- Hegnerová, K.; Bocková, M.; Vaisocherová, H.; Krištofiková, Z.; Říčný, J.; Řípová, D.; Homola, J. Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker. Sens. Actuators B Chem. 2009, 139, 69–73. [Google Scholar] [CrossRef]
- Ronot-Trioli, C.; Trouillet, A.; Veillas, C.; Gagnaire, H. Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor. Sens. Actuators A Phys. 1996, 54, 589–593. [Google Scholar] [CrossRef]
- Nenninger, G.G.; Tobiška, P.; Homola, J.; Yee, S.S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens. Actuators B Chem. 2001, 74, 145–151. [Google Scholar] [CrossRef]
- Michel, D.; Xiao, F.; Alameh, K. A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sens. Actuators B Chem. 2017, 246, 258–261. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- McFarland, A.D.; Van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.H.; Bhattacharjee, R.R.; Mandal, T.K. Organic ligand-mediated synthesis of shape-tunable gold nanoparticles: An application of their thin film as refractive index sensors. J. Phys. Chem. C 2007, 111, 9684–9693. [Google Scholar] [CrossRef]
- Sugawa, K.; Tahara, H.; Yamashita, A.; Otsuki, J.; Sagara, T.; Harumoto, T.; Yanagida, S. Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material. ACS Nano 2015, 9, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Larsson, E.M.; Alegret, J.; Käll, M.; Sutherland, D.S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Lu, S.P.; Lin, J.W.; Lee, P.T. High sensitivity index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108. [Google Scholar] [CrossRef] [Green Version]
- Cen, C.; Lin, H.; Huang, J.; Liang, C.; Chen, X.; Tang, Y.; Yi, Z.; Ye, X.; Liu, J.; Yi, Y.; et al. A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors 2018, 18, 4489. [Google Scholar] [CrossRef] [Green Version]
- Gylfason, K.B.; Carlborg, C.F.; Kaźmierczak, A.; Dortu, F.; Sohlström, H.; Vivien, L.; Barrios, C.A.; Van der Wijngaart, W.; Stemme, G. On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array. Opt. Express 2010, 18, 3226–3237. [Google Scholar] [CrossRef]
- Sun, X.; Dai, D.; Thylén, L.; Wosinski, L. High-sensitivity liquid refractive-index sensor based on Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt. Express 2015, 23, 25688–25699. [Google Scholar] [CrossRef]
- Tu, Z.; Gao, D.; Zhang, M.; Zhang, D. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Opt. Express 2017, 25, 20911–20922. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsieh, W.-H.; Chau, L.-K.; Chang, G.-E. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection. Sens. Actuators B Chem. 2017, 250, 659–666. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, J.; Zhang, Q.; Ge, H.; Tang, C.; Liu, Y.; Guo, B. Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt. Mater. Express 2018, 8, 342–347. [Google Scholar] [CrossRef]
- Qian, L.; Wang, K.; Wu, G.; Zhu, L.; Han, C.; Yan, C. Non-homogeneous composite GMR structure to realize increased filtering range. Opt. Express 2018, 26, 23602–23612. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Joseph, J.; Yukino, R.; Sandhu, A. High sensitivity refractive index sensor based on simple diffraction from phase grating. Opt. Lett. 2016, 41, 2101–2104. [Google Scholar] [CrossRef] [PubMed]
- Triggs, G.J.; Wang, Y.; Reardon, C.P.; Fischer, M.; Evans, G.J.O.; Krauss, T.F. Chirped guided-mode resonance biosensor. Optica 2017, 4, 229–234. [Google Scholar] [CrossRef]
- Shakoor, A.; Grande, M.; Grant, J.; Cumming, D.R.S. One-dimensional silicon nitride grating refractive index sensor suitable for integration with CMOS detectors. IEEE Photon. J. 2017, 9, 6800711. [Google Scholar]
- Hsu, H.-Y.; Lan, Y.-H.; Huang, C.-S. A gradient grating period guided-mode resonance spectrometer. IEEE Photon. J. 2018, 10, 4500109. [Google Scholar] [CrossRef]
- Takashima, Y.; Haraguchi, M.; Naoi, Y. High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength. Sens. Actuators B Chem. 2018, 255, 1711–1715. [Google Scholar] [CrossRef]
- Takashima, Y.; Kusaba, K.; Haraguchi, M.; Naoi, Y. Highly sensitive refractive index sensor using dual resonance in subwavelength grating/waveguide with normally incident optical geometry. IEEE Sens. J. 2019, 19, 6147–6153. [Google Scholar] [CrossRef]
- Hsiung, C.-T.; Huang, C.-S. Refractive index sensor based on a gradient grating period guided-mode resonance. IEEE Photon. Technol. Lett. 2019, 31, 253–256. [Google Scholar] [CrossRef]
- Chow, E.; Grot, A.; Mirkarimi, L.W.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Di Falco, A.; O’Faolain, L.; Krauss, T.F. Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett. 2009, 94, 063503. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Zhao, D.; Zhou, W.; Sun, Y. High quality factor photonic crystal filter at k ≈ 0 and its application for refractive index sensing. Opt. Express 2017, 25, 10536–10545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive-Ramírez, M.; Gil-Rostra, J.; Yubero, F.; González-Elipe, A.R. Robust polarization active nanostructured 1D Bragg microcavities as optofluidic label-free refractive index sensor. Sens. Actuators B Chem. 2018, 256, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cardona, N.D.; Reyes-Vera, E.; Torres, P. Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique. IEEE Sens. J. 2019, 18, 7492–7498. [Google Scholar]
- Islam, M.D.; Sultana, J.; Aoni, R.A.; Habib, M.H.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. Localized surface plasmon resonance biosensor: An improved technique for SERS response intensification. Opt. Lett. 2019, 44, 1134–1137. [Google Scholar] [CrossRef]
- Gomez-Cardona, N.; Reyes-Vera, E.; Torres, P. High sensitivity refractive index sensor based on the excitation of long-range surface plasmon polaritons in H-shaped optical fiber. Sensors 2020, 20, 2111. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Kan, S.; Marriott, G.; Chang-Hasnain, C. High-contrast grating resonators for label-free detection of disease biomarkers. Sci. Rep. 2016, 6, 27482. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Thantrakul, C.; Kan, S.; Chang-Hasnain, C.; Ho, D.R. Feasibility of using high-contrast grating as a point-of-care sensor for therapeutic drug monitoring of immunosuppressant. IEEE J. Transl. Emg. Health Med. 2020, 8, 2800206. [Google Scholar] [CrossRef]
- Karagodsky, V.; Sedgwick, F.G.; Chang-Hasnain, C.J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 2010, 18, 16973–16988. [Google Scholar] [CrossRef]
- Karagodsky, V.; Chang-Hasnain, C.J. Physics of near-wavelength high contrast gratings. Opt. Express 2012, 20, 10888–10895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang-Hasnain, C.J.; Yang, W. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 2012, 4, 379–440. [Google Scholar] [CrossRef] [Green Version]
- Kikuta, H.; Toyota, H.; Yu, W. Optical elements with subwavelength structured surfaces. Opt. Rev. 2003, 10, 63–73. [Google Scholar] [CrossRef]
- Barker, A.S.; Ilegems, M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys. Rev. B 1973, 7, 743–750. [Google Scholar] [CrossRef]
- Takashima, Y.; Shimizu, R.; Haraguchi, M.; Naoi, Y. Influence of low-contrast subwavelength grating shape on polarization characteristics of GaN-based light-emitting diode emissions. Opt. Eng. 2015, 6, 067112. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
Sensor Description | RI Range | RI Detection Limit (RIU) | Optical Setups | Operating Wavelength (nm) | Sensor Material |
---|---|---|---|---|---|
SPR based optical fiber [8] | 1.33–1.40 | 2 × 10−4 | Optical fiber | 670 | Au |
Flexible fiber-optic SPR [10] | 1.33–1.3305 | 3.672 × 10−5 | Optical fiber and prism | 1550 | Ag |
Subwavelength grating waveguide micro-ring resonator [20] | 1.333–1.343 | 5.4645 × 10−5 | On chip | 1550 | Si3N4 |
Guided-mode-resonance system with optofluidic [21] | 1.333–1.373 | 4.10 × 10−5 | Oblique incidence | 525 | TiO2 |
Chirped guided-mode resonance grating [25] | 1.3324–1.3444 | 2.37 × 10−4 | Normal incidence | 840 | Si3N4 |
Gradient period guided mode resonance grating [30] | 1.333–1.442 | 5.58 × 10−3 | Normal incidence | 640 | TiO2 |
Photonic crystal heterostructure cavity [32] | 1.3149–1.3392 | 7.8 × 10−6 | On chip | 1550 | Si |
Multi-plasmon resonance in microstructured optical fiber [35] | 1.33–1.39 | 1.0 × 10−5 | Optical fiber | 500–900 | Au |
Localized SPR in photonic crystal fiber [36] | 1.33–1.43 | 9 ×10−7 | Optical fiber | 600–1100 | Au |
Long-range SPR in H-shaped optical fiber [37] | 1.33–1.39 | 1.3 × 10−5 | Optical fiber | 800–1300 | Au |
This work | 1.333–1.354 | 1.71 × 10−3 | Normal incidence | 405 | GaN |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takashima, Y.; Haraguchi, M.; Naoi, Y. GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue–Violet Wavelength Region. Sensors 2020, 20, 4444. https://doi.org/10.3390/s20164444
Takashima Y, Haraguchi M, Naoi Y. GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue–Violet Wavelength Region. Sensors. 2020; 20(16):4444. https://doi.org/10.3390/s20164444
Chicago/Turabian StyleTakashima, Yuusuke, Masanobu Haraguchi, and Yoshiki Naoi. 2020. "GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue–Violet Wavelength Region" Sensors 20, no. 16: 4444. https://doi.org/10.3390/s20164444
APA StyleTakashima, Y., Haraguchi, M., & Naoi, Y. (2020). GaN-Based High-Contrast Grating for Refractive Index Sensor Operating Blue–Violet Wavelength Region. Sensors, 20(16), 4444. https://doi.org/10.3390/s20164444