Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Surface Treatment of CNTs Using OSA Modified Tapioca Starch
2.2. Surface Treatment of CNTs Using Chemical Surfactant NaDDBS and Direct Mixing Method
2.3. Comparison of Visual Settling Behaviour of CCNTs, Surfactant Modified CNTs and Bare CNTs
2.4. Preparation of Smart Cementitious Samples
3. Experimental Set-Up and Measurement Method
3.1. Experimental Setup
3.2. Definition of Loading and Unloading Sensitivity
4. Results and Discussion
4.1. Samples with Starch Copolymer Coated CNTs (CCNTs)
4.2. Samples with Surfactant Modified CNTs (SM)
4.3. Samples with Bare CNTs (Direct Mixing Method)
4.4. Samples with no CNTs/CCNTs (Direct Mixing Method)
4.5. Discussion
4.6. Influence of the Amount of CNTs (CNT: Cement Ratio)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ativitavas, N.; Pothisiri, T.; Fowler, T.J. Identification of fiber-reinforced plastic failure mechanisms from acoustic emission data using neural networks. J. Compos. Mater. 2006, 40, 193–226. [Google Scholar] [CrossRef]
- Dzenis, Y.A.; Saunders, I. On the possibility of discrimination of mixed mode fatigue fracture mechanisms in adhesive composite joints by advanced acoustic emission analysis. Int. J. Fract. 2002, 117, 23–28. [Google Scholar] [CrossRef]
- Ito, A.; Aoki, Y.; Hashimoto, S. Accurate extraction and measurement of fine cracks from concrete block surface image. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, Sevilla, Spain, 5−8 November 2002; pp. 2202–2207. [Google Scholar]
- Yamaguchi, T.; Suzuki, K.; Hartono, P.; Hashimoto, S. Percolation approach to image-based crack detection. In Proceedings of the 7th International Conference on Quality Control by Artificial Vision, Nagoya, Japan, 18−20 May 2005; pp. 291–296. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Zhou, O.Z. Applications of carbon nanotubes. In Carbon Nanotubes; Topics in Applied Physics; Dresselhaus, M.S., Dresselhaus, G., Avouris, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 80, pp. 391–425. [Google Scholar]
- Baughman, R.H.; Zakhidov, A.A.; De Heer, W.A. Carbon nanotubes–the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, S.; Kim, J. Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon 2011, 49, 518–527. [Google Scholar] [CrossRef]
- Lyshevski, S.E. MEMS and NEMS: Systems, Devices and Structures; CRC Press: Boca Raton, FL, USA, 2002; pp. 46–48. [Google Scholar] [CrossRef]
- Kon, S.; Oldham, K.; Horowitz, R. Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. In Proceedings of the 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 18−22 March 2007; p. 65292V. [Google Scholar]
- Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 3rd International Conference on Innovative Materials, Structures and Technologies (IMST 2017), Riga, Latvia, 27−29 September 2017; p. 012023. [Google Scholar]
- Reales, O.A.M.; Toledo Filho, R.D. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Rausch, J.; Mäder, E. Health monitoring in continuous glass fibre reinforced thermoplastics: Manufacturing and application of interphase sensors based on carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Kwon, E.; Ou, J. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J. Compos. Mater. 2012, 46, 19–25. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 055010. [Google Scholar] [CrossRef]
- Materazzzi, A.; Ubertini, F.; D’Alessandro, A. Carbon nanotube cement-based sensors for dynamic monitoring of concrete structures. In Proceedings of the 2013 FIB Symposium, Tel−Aviv, Israel, 22−24 April 2013; pp. 22–24. [Google Scholar]
- Kim, H.; Park, I.; Lee, H. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos. Struct. 2014, 116, 713–719. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. Carbon-nanotube/cement composite with piezoresistive property. Smart Mater. Struct. 2009, 23481135, 219–55010. [Google Scholar]
- Min, C.; Shen, X.; Shi, Z.; Chen, L.; Xu, Z. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym. Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- de P. Cota, F.; Panzera, T.H.; Schiavon, M.A.; Christoforo, A.L.; Borges, P.H.R.; Bowen, C.; Scarpa, F. Full factorial design analysis of carbon nanotube polymer-cement composites. Mater. Res. 2012, 15, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Yazdanbakhsh, A.; Grasley, Z.; Tyson, B.; Al-Rub, R.A. Carbon nano filaments in cementitious materials: Some issues on dispersion and interfacial bond 2. ACI Spec. Publ. 2009, 267, 21–34. [Google Scholar]
- Parveen, S.; Rana, S.; Fangueiro, R. A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomaterials 2013, 2013. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Grasley, Z.; Tyson, B.; Al-Rub, R.K.A. Distribution of carbon nanofibers and nanotubes in cementitious composites. Transp. Res. Rec. 2010, 2142, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Bossa, N.; Qu, F.; Winglee, J.; Li, G.; Sun, K.; Liang, H.; Wiesner, M.R. Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes. Environ. Sci. Technol. 2017, 51, 253–262. [Google Scholar] [CrossRef]
- Krajangpan, S.; Kalita, H.; Chisholm, B.J.; Bezbaruah, A.N. Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: Dispersibility and contaminant treatability. Environ. Sci. Technol. 2012, 46, 10130–10136. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Konsta-Gdoutos, M.S.; Shah, S.P. Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers. Spec. Publ. 2010, 270, 115–124. [Google Scholar]
- Luo, J.; Duan, Z.; Li, H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Status Solidi A 2009, 206, 2783–2790. [Google Scholar] [CrossRef]
- Islam, M.; Rojas, E.; Bergey, D.; Johnson, A.; Yodh, A. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269–273. [Google Scholar] [CrossRef]
- Borode, A.O.; Ahmed, N.O.; Olubambi, P.A. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Phys. Fluids 2019, 31, 071301. [Google Scholar] [CrossRef]
- Ntim, S.A.; Sae-Khow, O.; Witzmann, F.A.; Mitra, S. Effects of Polymer Wrapping and Covalent Functionalization on the Stability of MWCNT in Aqueous Dispersions. J. Colloid Interface Sci. 2011, 355, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Rixom, R.; Mailvaganam, N. Chemical Admixtures for Concrete; CRC Press: Boca Raton, FL, USA, 1999; pp. 105–118. [Google Scholar]
- Colombo, A.; Geiker, M.R.; Justnes, H.; Lauten, R.A.; De Weerdt, K. On the effect of calcium lignosulfonate on the rheology and setting time of cement paste. Cem. Concr. Res. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Res. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Veedu, V.P. Multifunctional cementitious nanocomposite material and methods of making the same. Patents 2010, 2, 23. [Google Scholar]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Azhari, F. Cement-Based Sensors for Structural Health Monitoring. Ph.D. Thesis, University of British, Vancouver, BC, Canada, 2008. [Google Scholar]
- Joseph, S.K.; Sonia Xavier, A. Effect of Starch Admixtures on Fresh and Hardened Properties of Concrete. Int. J. Sci. Eng. Res. 2016, 4, 27–30. [Google Scholar]
- Wanishlamlert, C.; Julnipitawong, P.; Tangtermsirikul, S. Effect of tapioca starch on properties of self-compacting con. J. Thailand Concr. Assoc. 2017, 5, 19–28. [Google Scholar]
- Rashid, U.S.; Simsek, S.; Kanel, S.R.; Bezbaruah, A.N. Modified tapioca starch for iron nanoparticle dispersion in aqueous media: Potential uses for environmental remediation. SN Appl. Sci. 2019, 1, 1379. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Ojeda, F.E.; Larsson, H.; Eliasson, A.C. Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohydr. Polym. 2005, 59, 313–327. [Google Scholar] [CrossRef]
- Yellampalli, S. Carbon Nanotubes: Polymer Nanocomposites; IntechOpen: Lodon, UK, 2011; pp. 15–91. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.-C.; Herrera, A.; Prakash, O. Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydr. Polym. 2011, 83, 407–413. [Google Scholar] [CrossRef]
- Han, J.A.; BeMiller, J.N. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym. 2007, 67, 366–374. [Google Scholar] [CrossRef]
Dispersion Method | Group | Number of Samples | Description |
---|---|---|---|
Direct Mixing Method | DM | 6 | 0.1% CNTs |
Surfactant Method | SM | 6 | 0.1% CNTs |
Copolymer Method | CCNT (A) * | 6 | 0.1% CNTs |
CCNT (B) * | 4 | 0.2% CNTs | |
CCNT (C) * | 4 | 0.3% CNTs | |
CCNT (D) * | 4 | 0.5% CNTs | |
Direct Mixing Method ** | MS | 3 | Only Modified Starch ** |
Direct Mixing Method *** | PS | 3 | Only Cement *** |
Parameter | Value |
---|---|
Type of CNT Outside diameter | Multi−walled 50–100 nm |
Inside diameter | 5–10 nm |
Length | 5–20 um |
Purity | >95 weight% |
Ash content | <1.5 weight% |
Specific surface area | >60 m2/g |
Amorphous carbon content | <3.0% |
Bulk density | 0.28 g/cm3 |
True density | ~2.1 g/cm3 |
Group Name | Force Sensitivity: Loading (V/kN) | Force Sensitivity: Unloading (V/kN) | Sensitivity Difference (V/kN) | Average Force Sensitivity (V/kN) | Hysteresis (%) |
---|---|---|---|---|---|
PS | 0.00078 | 0.00067 | 0.00011 | 0.000725 | 15.2 |
MS | 0.00111 | 0.00121 | 0.00010 | 0.00116 | 8.6 |
DM | 0.00225 | 0.00209 | 0.00016 | 0.00217 | 7.4 |
SM | 0.00307 | 0.00289 | 0.00018 | 0.00298 | 6.04 |
CCNT | 0.00322 | 0.00312 | 0.0001 | 0.00317 | 3.1 |
Group Name | Standard Derivation: Loading (±V/kN) | Standard Derivation: Loading (%) | Standard Derivation: Unloading (±V/kN) | Standard Derivation: Unloading (%) |
---|---|---|---|---|
PS | 0.00054 | 69.2% | 0.00045 | 67.2% |
MS | 0.00078 | 70.3% | 0.00077 | 63.6% |
DM | 0.00204 | 90.7% | 0.00192 | 91.9% |
SM | 0.00233 | 75.9% | 0.00240 | 80.4% |
CCNT | 0.00111 | 34.5% | 0.00121 | 38.8% |
Sample Groups | t-Value | p-Value |
---|---|---|
PS * MS | −11.7509 | 5.16 × 10−23 |
PS * DM | −4.83611 | 2.14 ×10−6 |
PS * CCNT | −17.5647 | 9.46 × 10−44 |
PS * SM | −8.25885 | 5.51 × 10−15 |
MS * CCNT | 12.23548 | 1.34 × 10−26 |
DM * CCNT | −4.31108 | 2.09 × 10−5 |
SM * CCNT | −9.1565 | 0.03 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chia, L.; Blazanin, G.; Huang, Y.; Rashid, U.S.; Lu, P.; Simsek, S.; N. Bezbaruah, A. Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials. Sensors 2020, 20, 3985. https://doi.org/10.3390/s20143985
Chia L, Blazanin G, Huang Y, Rashid US, Lu P, Simsek S, N. Bezbaruah A. Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials. Sensors. 2020; 20(14):3985. https://doi.org/10.3390/s20143985
Chicago/Turabian StyleChia, Leonard, Gina Blazanin, Ying Huang, Umma Salma Rashid, Pan Lu, Senay Simsek, and Achintya N. Bezbaruah. 2020. "Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials" Sensors 20, no. 14: 3985. https://doi.org/10.3390/s20143985
APA StyleChia, L., Blazanin, G., Huang, Y., Rashid, U. S., Lu, P., Simsek, S., & N. Bezbaruah, A. (2020). Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials. Sensors, 20(14), 3985. https://doi.org/10.3390/s20143985