Rodríguez-Martín, M.; Fueyo, J.G.; Gonzalez-Aguilera, D.; Madruga, F.J.; García-Martín, R.; Muñóz, Á.L.; Pisonero, J.
Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods. Sensors 2020, 20, 3982.
https://doi.org/10.3390/s20143982
AMA Style
Rodríguez-Martín M, Fueyo JG, Gonzalez-Aguilera D, Madruga FJ, García-Martín R, Muñóz ÁL, Pisonero J.
Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods. Sensors. 2020; 20(14):3982.
https://doi.org/10.3390/s20143982
Chicago/Turabian Style
Rodríguez-Martín, Manuel, José G. Fueyo, Diego Gonzalez-Aguilera, Francisco J. Madruga, Roberto García-Martín, Ángel Luis Muñóz, and Javier Pisonero.
2020. "Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods" Sensors 20, no. 14: 3982.
https://doi.org/10.3390/s20143982
APA Style
Rodríguez-Martín, M., Fueyo, J. G., Gonzalez-Aguilera, D., Madruga, F. J., García-Martín, R., Muñóz, Á. L., & Pisonero, J.
(2020). Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods. Sensors, 20(14), 3982.
https://doi.org/10.3390/s20143982