An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of PEI-rGO-AuNCs Nanocomposites
2.3.1. Preparation of AuNCs
2.3.2. Preparation of PEI-rGO
2.3.3. Preparation of PEI-rGO-AuNCs
2.3.4. Preparation of Electrochemical Sensor
2.3.5. Electrochemical Assay of β-Lg
2.3.6. Milk Sample Analysis
3. Results and Discussion
3.1. Electrochemical Immunoassay Strategy
3.2. Characterization of PEI-rGO Nanocomposites
3.3. Characterization of PEI-rGO-AuNCs Nanocomposites
3.4. Electrochemical Performance of the Electrochemical Sensors
3.5. Optimization of Conditions for Electrochemical Analysis
3.6. Analytical Performance of β-Lg Detection
3.7. Reproducibility, Specificity, and Stability of Sensor
3.8. Milk Sample Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HPLC | High-Performance Liquid Chromatography |
RP-HPLC | Reversed-Phase High-Performance Liquid Chromatography |
UPLC | Ultra-Performance Liquid Chromatography |
LC-MS | Liquid Chromatography–Mass Spectrometry |
ELISA | Enzyme-Linked Immunosorbent Assay |
ICA | Immunochromatographic Assay |
SPR | Surface Plasmon Resonance |
References
- Paschke, A.; Ulberth, F. Allergens in foods. Anal. Bioanal. Chem. 2019, 395, 15–16. [Google Scholar] [CrossRef] [Green Version]
- Sicherer, S.H. Epidemiology of food allergy. J. Allergy Clin. Immunol. 2011, 127, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Nocerino, R.; Pezzella, V.; Cosenza, L.; Amoroso, A.; Scala, C.D.; Amato, F.; Iacono, G.; Canani, R.B. The controversial role of food allergy in infantile colic: Evidence and clinical management. Nutrients 2015, 7, 2015–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Special Committee on Food Allergy. Diagnosis and Rationale for Action against Cow’s Milk Allergy; the WAO DRACMA guideline. Allergy Immunol. 2010, 21, 1–125. [Google Scholar]
- Fany, B.; Hervé, B.; Stefano, A.; Merima, B.; Evelyne, P.; Sandrine, A.L.; Karine, A.P.; Jean, W. Update on optimized purification and characterization of natural milk allergens. Mol. Nutr. Food Res. 2010, 52, S166–S175. [Google Scholar]
- Agamy, I. The challenge of cow milk protein allergy. Small Rumin. Res. 2007, 68, 64–72. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.; Mafra, I. Bovine Milk Allergens: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef] [Green Version]
- Bonfatti, V.; Grigoletto, L.; Cecchinato, A.; Gallo, L.; Carnier, P. Validation of a new reversed-phase high-performance liquid chromatography method for separation and quantification of bovine milk protein genetic variants. J. Chromatogr. A 2008, 1195, 101–106. [Google Scholar] [CrossRef]
- Rostellato, R. Separation and quantification of water buffalo milk protein fractions and genetic variants by RP-HPLC. Food Chem. 2013, 136, 364–367. [Google Scholar]
- Boitz, L.; Fiechter, G.; Seifried, R. A novel ultra-high performance liquid chromatography method for the rapid determination of beta-lactoglobulin as heat load indicator in commercial milk samples. J. Chromatogr. A 2015, 1386, 98–102. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, P.; Pi, F.; Sun, C. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens. Food Control. 2017, 74, 79–88. [Google Scholar] [CrossRef]
- Sayers, R.; Johnson, P.; Marsh, J.; Barran, P.; Brown, H.; Mills, E. The effect of thermal processing on the behaviour of peanut allergen peptide targets used in multiple reaction monitoring mass spectrometry experiments. Analyst 2016, 141, 4130–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Li, X.; Gao, J.; Tong, P.; Lu, J.; Chen, H. Preparation, immunological characterization and polyclonal antibody development for recombinant epitope tandem derived from bovine β-Lg. Food Agric. Immunol. 2016, 27, 806–819. [Google Scholar] [CrossRef]
- He, S.; Li, X.; Gao, J.; Tong, P.; Lu, J.; Chen, H. Development of a H2O2-sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β-Lg by monoclonal antibody. Food Agric. 2018, 98, 519–526. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Ji, K.; Wan, W.; Hu, D.; Luo, X.; Liu, Z. A simple and fast detection method for bovine milk residues in foods: A 2-site monoclonal antibody immunochromatography assay. Food Sci. 2013, 78, 452–457. [Google Scholar]
- Wang, W.; Zhu, X.; Teng, S.; Xu, X.; Zhou, G. Development and validation of a surface plasmon resonance biosensor for specific detection of porcine serum albumin in food. J. AOAC Int. 2018, 101, 1868–1872. [Google Scholar] [CrossRef]
- Ashleya, J.; Piekarskaa, M.; Segersa, C.; Trinhb, L.; Rodgersb, T.; Willeyc, R.; Tothilla, I.E. An SPR based sensor for allergens detection. Biosens. Bioelectron. 2017, 88, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sens. 2018, 3, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Valdepeñas, V.; Campuzano, S.; Conzuelo, F.; Torrente-Rodríguez, R.M.; Gamella, M.; Reviejo, A.J.; Pingarrón, J.M. Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-Lg. Talanta 2015, 131, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Dai, B.; Zhao, W.; Jiang, L.; Huang, H. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@ BiVO4 microspheres. Anal. Chim. Acta 2020, 1120, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, J. Chemiluminescence-based aptasensors for various target analytes. Luminescence 2018, 33, 1298–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmeti, E.; Stankovi, D.; Hajrizi, A. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determinatio. Talanta 2016, 159, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, A.; Sheng, Q.; Zheng, J. A Hydrogen Peroxide Biosensor Based on Direct Electrochemistry of Hemoglobin in Palladium Nanoparticles/Graphene–Chitosan Nanocomposite Film. Appl. Biochem. Biotechnol. 2011, 166, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Feng, L.; Panaitov, G.; Kireev, D.; Mayer, D.; Offenhäusser, A.; Krause, H. Biosensing near the neutrality point of graphene. Sci. Adv. 2017, 3, e1701247. [Google Scholar] [CrossRef] [Green Version]
- Salavagione, J.; Gomez, A. Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Int. J. Biol. Macromol. 2009, 42, 6331–6334. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.; Zhang, H.; Jiang, Z.; Yu, Z.; Du, X.; Mai, Y. Simultaneous surface functionalization and reduction of graphene oxide with Ctadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730. [Google Scholar] [CrossRef]
- Cai, X.; Lin, M.; Tan, S.; Mai, W.; Zhang, Y.; Lin, Z.; Zhang, X. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 2012, 50, 3407–3415. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Lin, Y.; Zheng, Y.; Lin, J. Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on Microfluidic chip. Talanta 2016, 154, 73–79. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y. Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 2015, 91, 382–398. [Google Scholar] [CrossRef]
- Su, Y.; Xue, T.; Liu, Y. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251–1265. [Google Scholar] [CrossRef]
- Alim, S.; Vejayan, J.; Yusoff, M.; Kafi, A. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens. Bioelectron. 2018, 121, 125–136. [Google Scholar]
- Eissa, S.; Tlili, C.; L’Hocine, L.; Zourob, M. Electrochemical immunosensor for the milk allergen β-Lg based on electrografting of organic film on graphene modified screen-printed carbon electrode. Biosens. Bioelectron. 2012, 38, 308–313. [Google Scholar] [CrossRef]
- Lu, M.; Wu, X.; Hao, C.; Xu, C.; Kuang, H. An Ultrasensitive Electrochemical Immunosensor for Nonylphenol Leachate from Instant Noodle Containers in Southeast Asia. Chem.-Eur. J. 2019, 25, 7023–7030. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, S.; Jin, M.; He, T.; Zhang, Z. Simple and sensitive fluorescence assay for acetylcholinesterase activity detection and inhibitor screening based on glutathione-capped gold nanoclusters. Sens. Actuator B-Chem. 2017, 253, 196–202. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.; Shi, Y. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice. Anal. Chim. Acta 2017, 949, 23–34. [Google Scholar] [CrossRef]
- Shan, C.; Wang, L.; Han, D.; Li, F.; Zhang, Q.; Zhang, X.; Niu, L. Polyethyleneimine-functionalized graphene and its layer-by-layer assembly with Prussian blue. Thin Solid Films 2013, 534, 572–576. [Google Scholar] [CrossRef]
- Yu, D.; Dai, L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 2009, 1, 467–470. [Google Scholar] [CrossRef]
- Cao, L.; Liu, Y.; Zhang, B.; Lu, L. In situ controllable growth of prussian blue nanocubes on reduced graphene oxide: Facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339–2346. [Google Scholar] [CrossRef]
- Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef]
- Xia, B.; Wu, H.; Yan, Y.; Wang, H.; Wang, X. One-Pot Synthesis of Platinum Nanocubes on Reduced Graphene Oxide with Enhanced Electrocatalytic Activity. Small 2014, 10, 2336–2339. [Google Scholar] [CrossRef]
- Grote, F.; Yu, Z.; Wang, J.; Yu, S.; Lei, Y. Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt–Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors. Small 2015, 11, 4666–4672. [Google Scholar] [CrossRef]
- Wang, D.; Bao, Y.; Zha, W.; Zhao, J.; Dang, Z.; Hu, G. Improved Dielectric Properties of Nanocomposites Based on Poly (vinylidene fluoride) and Poly (vinyl alcohol)-Functionalized Graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273–6279. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Zhang, Y.; Zhang, Q.; Luan, X.; Duan, Y.; Pan, S.; Lv, F.; An, Q. Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 2015, 94, 590–598. [Google Scholar] [CrossRef]
- Choi, J.; Wagner, P.; Jalili, R.; Kim, J.; Macfarlane, D.R.; Wallace, G. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2018, 8, 1801280. [Google Scholar] [CrossRef]
- Tang, Z.; He, J.; Chen, J.; Niu, Y.; Zhao, Y.; Zhang, Y.; Yu, C. A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@ AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens. Bioelectron. 2018, 101, 253–259. [Google Scholar] [CrossRef]
- Li, M.; Wang, P.; Li, F. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core–shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens. Bioelectron. 2017, 87, 752–759. [Google Scholar] [CrossRef]
Sample | ELISA (μg/mL) | Sensor (μg/mL) |
---|---|---|
Jindian | 10.38 ± 0.02 | 10.85 ± 0.25 |
Telunsu | 17.09 ± 0.56 | 17.05 ± 0.55 |
Yili | 15.54 ± 0.47 | 16.10 ± 0.10 |
Mengniu | 15.47 ± 0.40 | 14.60 ± 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Wang, Y.; Zhu, L.; Jiang, L. An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. Sensors 2020, 20, 3956. https://doi.org/10.3390/s20143956
Hong J, Wang Y, Zhu L, Jiang L. An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. Sensors. 2020; 20(14):3956. https://doi.org/10.3390/s20143956
Chicago/Turabian StyleHong, Jingyi, Yuxian Wang, Liying Zhu, and Ling Jiang. 2020. "An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk" Sensors 20, no. 14: 3956. https://doi.org/10.3390/s20143956
APA StyleHong, J., Wang, Y., Zhu, L., & Jiang, L. (2020). An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. Sensors, 20(14), 3956. https://doi.org/10.3390/s20143956