Direct Catalytic Fuel Cell Device Coupled to Chemometric Methods to Detect Organic Compounds of Pharmaceutical and Biomedical Interest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Chemometric Methods
3. Results and Discussion
3.1. Qualitative Analysis
3.2. Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D.P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110. [Google Scholar] [CrossRef]
- Wasmus, S.; Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 1999, 461, 14–31. [Google Scholar] [CrossRef]
- Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445–457. [Google Scholar] [CrossRef]
- Benziger, J.B.; Satterfield, M.B.; Hogarth, W.H.J.; Nehlsen, J.P.; Kevrekidis, I.G. The power performance curve for engineering analysis of fuel cells. J. Power Sources 2006, 155, 272–285. [Google Scholar] [CrossRef]
- Isa, M.; Ismail, B.; Hadzer, C.M.; Daut, I.; Bakar, F.A. Characteristic curve of a fuel cell. Am. J. Appl. Sci. 2006, 3, 2134–2135. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.; Laroche, C.; Tran, N.; Goetzinger, D.; Najafi, N.; Kawaguchi, K. A new methanol concentration microsensor for improved DMFC performance. In Proceedings of the Fuel Cell Summit. 2005, Mohegan Sun Casino & Resort, Uncasville, CT, USA, 23–25 October 2005. [Google Scholar]
- Mallick, R.K.; Thombre, S.B.; Shrivastava, N.K. Vapor feed direct methanol fuel cells (DMFCs): A review. Renew. Sustain. Energy Rev. 2016, 56, 51–74. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ravikumar, M.K.; Gandhi, K.S. Direct methanol fuel cells for vehicular applications. J Solid State Electrochem. 1998, 2, 117–122. [Google Scholar] [CrossRef]
- Ministry of New and Renewable Energy India. Report on Fuel Cell Development in India. Appendix—VI; Ministry of New and Renewable Energy India: New Delhi, India, 2016.
- Na, Y.; Krewer, U.; Kienle, A.; Kohler, J. Characterization of Autonomous Direct Methanol Fuel Cell Systems with Various Designs for Portable Applications. Ph.D. Thesis, Fakult ät f ür Maschinenbauder Technischen Universit ät Carolo-Wilhelmina zu Braunschweigzur Erlangung, Braunschweig, Germany, 7 December 2016. [Google Scholar]
- Na, Y.; Zenith, F.; Krewer, U. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration. Energies 2015, 8, 10409–10429. [Google Scholar] [CrossRef] [Green Version]
- Bayramoglu, M.; Ilbayb, Z. Environmental Aspects of Direct Methanol Fuel Cell: Experimental Detection of Methanol Electro-Oxidation Products. Environ. Prog. Sustain. Energy 2017, 36, 1847–1855. [Google Scholar] [CrossRef]
- Patrabansh, S.; El-Sharkh, M.Y.; Alam, M.; Yasser, R. DMFC Models and Applications—A Literature Survey, Part I. In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 7–9 January 2014; pp. 2346–2355. [Google Scholar]
- Tafaoli-Masoule, M.; Bahrami, A.; Mohammadrezaei, D. Optimum Conditions for Maximum Power of a Direct Methanol Fuel Cell. Int. Sch. Res. Not. 2013, 2013, 872873. [Google Scholar] [CrossRef]
- Baglio, V.; Di Blasi, A.; Modica, E.; Cretì, P.; Antonucci, V.; Aricò, A.S. Electrochemical Analysis of Direct Methanol Fuel Cells for Low Temperature Operation. Int. J. Electrochem. Sci. 2006, 1, 71–79. [Google Scholar]
- Falcao, D.S.; Pereira, J.P.; Rangel, C.M.; Pinto, A.M.F.R. Development and performance analysis of a metallic passive micro-direct methanol fuel cell for portable applications. Int. J. Hydrogen Energy 2015, 40, 5408–5415. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.S.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P. Membranes for direct methanol fuel cell applications: Analysis based on characterization, experimentation and modeling. In Advances in Fuel Cells; Zhang, X.W., Ed.; Research Signpost: Kerala, India, 2005; pp. 1–24. [Google Scholar]
- Davis, G.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Turner, A.P.F. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb. Technol. 1983, 5, 383–388. [Google Scholar] [CrossRef]
- Barton, S.A.C.; Murach, B.L.; Fuller, T.F.; West, A.C. A methanol sensor for portable direct methanol fuel cells. J. Electrochem. Soc. 1998, 145, 3783–3788. [Google Scholar] [CrossRef]
- Narayan, S.; Valdez, T.I.; Chun, W. Design and operation of an electrochemical methanol concentration sensor for direct methanol fuel cell systems. Electrochem. Solid State Lett. 2000, 3, 117–120. [Google Scholar] [CrossRef]
- Qi, Z.; He, C.; Hollett, M.; Attia, A.; Kaufman, A. Reliable and fast-responding methanol concentration sensor with novel design. Electrochem. Solid State Lett. 2003, 6, A88–A90. [Google Scholar] [CrossRef]
- Sun, W.; Sun, G.S.; Yang, W.; Yang, S.; Xin, Q. A methanol concentration sensor using twin membrane electrode assemblies operated in pulsed mode for DMFC. J. Power Sources 2006, 162, 1115–1121. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, J.; Zhang, J.; Wang, H.; Wilkinson, D.P.; Gu, C.E. Liquid methanol concentration sensors for direct methanol fuel cells. J. Power Sources 2006, 159, 626–636. [Google Scholar] [CrossRef]
- Sun, W.; Sun, G.S.; Yang, W.; Yang, S.; Xin, Q. A methanol concentration sensor using twin membrane electrode assemblies for direct methanol fuel cells. Int. J. Electrochem. Sci. 2006, 1, 160–170. [Google Scholar]
- Tomassetti, M.; Angeloni, R.; Merola, G.; Castrucci, M.; Campanella, L. Catalytic fuel cell used as an analytical tool for methanol and ethanol determination. Application to ethanol determination in alcoholic beverages. Electrochim. Acta 2016, 191, 1001–1009. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Castrucci, M.; Martini, E.; Campanella, L. Ethanol content determination in hard liquor drinks, beers, and wines, using a catalytic fuel cell. Comparison with other two conventional enzymatic biosensors: Correlation and statistical data. Acta Imeko 2018, 7, 91–95. [Google Scholar] [CrossRef]
- Tomassetti, M.; Merola, G.; Angeloni, R.; Marchiandi, S.; Campanella, L. Further development on DMFC device used for analytical purpose: Real applications in the pharmaceutical field and possible in biological fluids. Anal. Bioanal. Chem. 2016, 408, 7311–7319. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, M.; Angeloni, R.; Marchiandi, S.; Castrucci, M.; Sammartino, M.P.; Campanella, L. Direct Methanol (or Ethanol) Fuel Cell as Enzymatic or Non-Enzymatic Device, Used to Check Ethanol in Several Pharmaceutical and Forensic Samples. Sensors 2018, 18, 3596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Stafilov, T.; Škrbić, B.; Klánová, J.; Čupr, P.; Holoubek, I.; Kočov, M.; Đurišić-Mladenović, N. Chemometric assessment of the semivolatile organic contaminants content in the atmosphere of the selected sites in the Republic of Macedonia. J. Chemom. 2011, 25, 262–274. [Google Scholar] [CrossRef]
- Škrbić, B.; Đurišić-Mladenović, N.; Cvejanov, J. Principal Component Analysis of Trace Elements in Serbian Wheat. J. Agric. Food Chem. 2005, 53, 2171–2175. [Google Scholar] [CrossRef]
- Škrbić, B.; Đurišić-Mladenović, N. Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements, Serbia. Environ. Monit. Assess. 2013, 185, 457–471. [Google Scholar] [CrossRef]
- Pedersen, H.T.; Bro, R.; Engelsen, S.B. Magnetic Resonance in Food Science: A View to the Future; Webb, G.A., Belton, P.S., Gil, A.M., Delgadillo, I., Eds.; The Royal Society of Chemistry: London, UK, 2001; pp. 202–210. [Google Scholar]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Qannari, E.M.; Wakeling, I.; Courcoux, P.; MacFie, H.J.H. Defining the underlying sensory dimensions. Food Qual. Prefer. 2000, 11, 151–154. [Google Scholar] [CrossRef]
- Qannari, E.M.; Courcoux, P.; Vigneau, E. Common components and specific weights analysis performed on preference data. Food Qual. Prefer. 2001, 12, 365–368. [Google Scholar] [CrossRef]
- Mazerolles, G.; Hanafi, M.; Dufour, E.; Bertrand, D.; Qannari, E.M. Common components and specific weights analysis: A chemometric method for dealing with complexity of food products. Chemometr. Intell. Lab. Syst. 2006, 81, 41–49. [Google Scholar] [CrossRef]
- Nielsen, J.P.; Bertrand, D.; Micklander, E.; Courcoux, P.; Munck, L. Study of NIR spectra, particle size distributions and chemical parameters of wheat flours: A multi-way approach. J. Near Infrared Spectrosc. 2001, 9, 275–285. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Martini, E.; Castrucci, M.; Campanella, L. Enzymatic DMFC device used for direct analysis of chloramphenicol and a comparison with the competitive immunosensor method. Sens. Actuators B Chem. 2017, 255, 1545–1552. [Google Scholar] [CrossRef]
Regression Equation (Y = μA, X = mol L−1) | Linearity Range (=mol L−1) | R2 (a) | Pooled SD | LOD (b) (=mol L−1) | |
---|---|---|---|---|---|
Chloramphenicol | Y = 13.4 × 103 (±5.4 × 103) X + 72.8 (±15.8) | (1.0 × 10−6–5.0 × 10−5) | 0.9961 | 5.9 | 9.0 × 10−7 |
Imipenem | Y = 64.0 × 102 (±15.5 × 102) X + 53.6 (±14.1) | (6.0 × 10−6–1.5 × 10−5) | 0.9868 | 6 | 5.0 × 10−6 |
Methanol | Y = 21.8 × 103 (±0.78 × 103) X + 0.37 × 103 (±0.07 × 103) | (1.0 × 10−3–2.0 × 10−1) | 0.9912 | 7.2 | 8.0 × 10−4 |
Ethanol | Y = 17.8 × 103 (±0.95 × 103) X + 0.07 × 103 (±0.02 × 103) | (1.0 × 10−3–4.0 × 10−2) | 0.9888 | 6.8 | 8.0 × 10−4 |
Propanol | Y = 13.2 × 102 (±1.8 × 102) X + 19.8 (±1.0) | (5.4 × 10−4–9.4 × 10−3) | 0.9648 | 5.7 | 5.0 × 10−4 |
Atropine | Y = 70.6 × 101 (±49.2 × 101) X + 18.4 (±2.2) | (7.0 × 10−4–7.0 × 10−3) | 0.5076 | 7 | 6.5 × 10−4 |
Cortisone | Y = 10.1 × 103 (±3.6 × 103) X + 12.8 (±1.7) | (7.0 × 10−5–7.0 × 10−4) | 0.7956 | 8.5 | 6.5 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassetti, M.; Marini, F.; Angeloni, R.; Castrucci, M.; Campanella, L.; Di Natale, C. Direct Catalytic Fuel Cell Device Coupled to Chemometric Methods to Detect Organic Compounds of Pharmaceutical and Biomedical Interest. Sensors 2020, 20, 3615. https://doi.org/10.3390/s20133615
Tomassetti M, Marini F, Angeloni R, Castrucci M, Campanella L, Di Natale C. Direct Catalytic Fuel Cell Device Coupled to Chemometric Methods to Detect Organic Compounds of Pharmaceutical and Biomedical Interest. Sensors. 2020; 20(13):3615. https://doi.org/10.3390/s20133615
Chicago/Turabian StyleTomassetti, Mauro, Federico Marini, Riccardo Angeloni, Mauro Castrucci, Luigi Campanella, and Corrado Di Natale. 2020. "Direct Catalytic Fuel Cell Device Coupled to Chemometric Methods to Detect Organic Compounds of Pharmaceutical and Biomedical Interest" Sensors 20, no. 13: 3615. https://doi.org/10.3390/s20133615
APA StyleTomassetti, M., Marini, F., Angeloni, R., Castrucci, M., Campanella, L., & Di Natale, C. (2020). Direct Catalytic Fuel Cell Device Coupled to Chemometric Methods to Detect Organic Compounds of Pharmaceutical and Biomedical Interest. Sensors, 20(13), 3615. https://doi.org/10.3390/s20133615