Next Article in Journal
An Airborne Offner Imaging Hyperspectrometer with Radially-Fastened Primary Elements
Next Article in Special Issue
Interleaved Array Transducer with Polarization Inversion Technique to Implement Ultrasound Tissue Harmonic Imaging
Previous Article in Journal
Fiber-Optic Based Smart Textiles for Real-Time Monitoring of Breathing Rate
Open AccessArticle

Fusion iENA Scholar Study: Sensor-Navigated I-124-PET/US Fusion Imaging versus Conventional Diagnostics for Retrospective Functional Assessment of Thyroid Nodules by Medical Students

1
Clinic of Nuclear Medicine, Jena University Hospital, D-07749 Jena, Germany
2
Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Magdeburg University Hospital, D-39120 Magdeburg, Germany
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(12), 3409; https://doi.org/10.3390/s20123409
Received: 19 May 2020 / Revised: 13 June 2020 / Accepted: 14 June 2020 / Published: 17 June 2020
(This article belongs to the Special Issue Ultrasonic Systems for Biomedical Sensing)
In conventional thyroid diagnostics, the topographical correlation between thyroid nodules (TN) depicted on ultrasound (US) in axial or sagittal orientation and coronally displayed scintigraphy images can be challenging. Sensor-navigated I-124-PET/US fusion imaging has been introduced as a problem-solving tool for ambiguous cases. The purpose of this study was to investigate the results of multiple unexperienced medical students (MS) versus multiple nuclear medicine physicians (MD) regarding the overvalue of I-124-PET/US in comparison to conventional diagnostics (CD) for the functional assessment of TN. Methods: Out of clinical routine, cases with ambiguous findings on CD were selected for I-124-PET/US fusion imaging. Sixty-eight digital patient case files (PCF) of 34 patients (CDonly and CD+PET/US PCF) comprising 66 TN were provided to be retrospectively evaluated by 70 MD and 70 MS, respectively. A total of 2174 ratings (32.9 per TN) were carried out: 555 ratings (8.4 per TN) for CDonly and 532 ratings (8.1 per TN) for CD+PET/US by each MD and MS. Results: Functional assessment revealed 8.5%/11.7% (n.s.) (16.4%/25.8% (p = 0.0002)), 41.8%/28.5% (p < 0.0001) (23.9%/17.9% (p = 0.0193)), 36.0%/30.5% (n.s.) (57.3%/53.9% (n.s.)), and 13.7%/29.4% (p < 0.0001) (2.4%/2.4% (n.s.)) hyperfunctioning, indifferent, hypofunctioning, and not rateable TNs for CDonly (CD+PET/US) and MD/MS, respectively. The respective rating confidence was indicated as absolute certain, quite certain, equivocal, uncertain, and not rateable in 11.7/3.4% (p < 0.0001) (44.9%/38.9% (p = 0.0541), 51.9%/26.7% (p < 0.0001) (46.2%/41.5% (n.s.)), 21.6%/29.0% (p = 0.0051) (6.2%/14.8% (p < 0.0001)), 1.1%/11.5% (p < 0.0001) (0.2%/2.3% (p = 0.0032)), and 13.7%/29.4% (p < 0.0001) (2.4%/2.4% (n.s.)) by MD/MS, respectively. There was a significant difference in the diversity of the observers’ functional assessment of TN (MD 0.84 vs. MS 1.02, p = 0.0006) and the respective confidence in functional assessment (MD 0.93 vs. MS 1.16, p < 0.0001) between MD and MS on CDonly, whereas CD+PET/US revealed weaker differences for both groups (MD 0.48 vs. MS 0.47, p = 0.57; and MD 0.66 vs. MS 0.83, p = 0.0437). With the additional application of I-124-PET/US, the rating diversity of both MD and MS markedly tends towards more consistency (p < 0.0001 in each case). Conclusion: The additional application of sensor-navigated I-124-PET/US fusion imaging significantly influenced the functional assessment of TN positively, especially for unexperienced observers. View Full-Text
Keywords: ultrasound; multimodal imaging; sensor-navigated fusion imaging; thyroid nodules; iodine-124; positron emission tomography; medical students ultrasound; multimodal imaging; sensor-navigated fusion imaging; thyroid nodules; iodine-124; positron emission tomography; medical students
Show Figures

Figure 1

MDPI and ACS Style

Freesmeyer, M.; Winkens, T.; Weissenrieder, L.; Kühnel, C.; Gühne, F.; Schenke, S.; Drescher, R.; Seifert, P. Fusion iENA Scholar Study: Sensor-Navigated I-124-PET/US Fusion Imaging versus Conventional Diagnostics for Retrospective Functional Assessment of Thyroid Nodules by Medical Students. Sensors 2020, 20, 3409.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop