Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter
Abstract
:1. Introduction
2. Experimental Inductance-to-Frequency Converter
2.1. Switching Between the Measuring and Reference Impedance
2.2. Electrical Equivalent Circuits for Single- and Dual-Quartz Crystal Unit Operation
2.3. Experimental Inductance-to-Frequency Converter
2.4. The Principle of Converter’s Temperature and any Other Simultaneous Influence Compensation
3. Results
3.1. Experimental Data and Working Modes of the Converter
3.2. Inductance-to-Frequency Sensing Comparison with or without Cp for Single- and Dual-Quartz Crystal Units
3.3. Demonstration of the Dynamic Temperature Compensation of the Oscillator’s Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marauska, S.; Jahns, R.; Kirchhof, C.; Claus, M.; Quandt, E.; Knöchel, R.; Wagner, B. Highly sensitive wafer-level packaged mems magnetic field sensor based on magnetoelectric composites. Sens. Actuators A Phys. 2013, 189, 321–327. [Google Scholar] [CrossRef]
- Giang, D.T.H.; Duc, P.A.; Ngoc, N.T.; Duc, N.H. Geomagnetic sensors based on metglas/pzt laminates. Sens. Actuators A Phys. 2012, 179, 78–82. [Google Scholar] [CrossRef]
- Hui-Min, S.; Liang, H.; Xin, F. Integrated giant magnetoresistance technology for approachable weak biomagnetic signal detections. Sensors 2018, 18, 1–20. [Google Scholar]
- Beninato, A.; Sinatra, V.; Tosto, G.; Castagna, M.E.; Petralia, S.; Conoci, C.; Baglio, S. Inductive integrated biosensor with extended operative range for detection of magnetic beads for magnetic immunoassay. IEEE Trans. Instrum. Meas. 2017, 66, 348–359. [Google Scholar] [CrossRef]
- Wang, J.; Eijkel, J.C.T.; Jin, M.; Xie, S.; Yuan, D.; Zhou, G.; van den Berg, A.; Shui, L. Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles. Sens. Actuators B Chem. 2017, 247, 78–91. [Google Scholar] [CrossRef]
- Chen, L.; Qiulin, T.; Pinggang, J.; Wendong, Z.; Jun, L.; Chenyang, X.; Jijun, X. Review of research status and development trends of wireless passive lc resonant sensors for harsh environments. Sensors 2015, 15, 13097–13109. [Google Scholar]
- Wu, Y.; Zhang, H. Research on the effect of relative movement on the output characteristic of inductive sensors. Sens. Actuators A. Phys. 2017, 267, 485–490. [Google Scholar] [CrossRef]
- Annapureddy, V.; Palneedi, H.; Yoon, W.-H.; Park, D.-S.; Choi, J.-J.; Hahn, B.-D.; Ahn, C.-W.; Kim, J.-W.; Jeong, D.-Y.; Ryu, J. A pt/√hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sens. Actuators A Phys. 2017, 260, 206–211. [Google Scholar] [CrossRef]
- Haned, N.; Missous, M. Nano-tesla magnetic field magnetometry using an InGaAs–AlGaAs–GaAs 2DEG Hall sensor. Sens. Actuators A Phys. 2003, 102, 216–222. [Google Scholar] [CrossRef]
- Grimes, C.A.; Roy, S.C.; Rani, S.; Cai, Q. Theory, instrumentation and applications of magnetoelastic resonance sensors: A review. Sensors 2011, 11, 2809–2844. [Google Scholar] [CrossRef]
- Cai, L.; Chinthaka, P.G.; Qing Xiao, W.; Yang, L.; Yogesh, G.; Jurgen, K. Magnetic properties of FeNi-based thin film materials with different additives. Biosensors 2014, 4, 189–203. [Google Scholar]
- Li, S.; Li, Y.; Chen, H.; Horikawa, S.; Shen, W.; Simonian, A.; Chin, B.A. Direct detection of salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens. Bioelectron. 2010, 26, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Chen, X.; Li, N.; Chen, X.; Zhao, X. An inductive salt solution concentration sensor using a planar coil based on a PQCR-L circuit. Sens. Actuators A. Phys. 2017, 263, 246–251. [Google Scholar] [CrossRef]
- Matko, V.; Jezernik, K. Greatly improved small inductance measurement using quartz crystal parasitic capacitance compensation. Sensors 2010, 10, 3954–3960. [Google Scholar] [CrossRef]
- Cao, P.; Mara, A.; Rodriguez, P.L.; Faria, J.; Acevedo, M.J. Resolution in QCM sensors for the viscosity and density of liquids: Application to lead acid batteries. Sensors 2012, 12, 10604–10620. [Google Scholar]
- Uno, T.; Tashiro, H.; Noge, S. Temperature characteristics of β-phase quartz resonators and their application to accurate temperature sensors in high-temperature region. Electron. Commun. Jpn. 2012, 95, 9–18. [Google Scholar] [CrossRef]
- Florian, P.; Daniel, M.; Daniel, S.; Christoph, S.; Franz, J.G. Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures. Beilstein J. Nanotechnol. 2014, 5, 407–412. [Google Scholar] [Green Version]
- Kaman. Precision products/measuring. Inductive Technology Handbook. Kaman Connecticut. 2012. Available online: http://www.kamansensors.com/html_pages/ApplicationsHandbook.html (accessed on 7 August 2018).
- Chen, C.; Fei, L.; Jun, L.; Yanzhang, W. Investigation and optimization of the performance of an air-coil sensor with a differential structure suited to helicopter TEM exploration. Sensors 2015, 15, 23325–23340. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.C.; Ding, X.; Zhao, X. A high-stability quartz crystal resonator humidity sensor based on tuning capacitor. IEEE Trans. Instrum. Meas. 2018, 67, 715–721. [Google Scholar] [CrossRef]
- Hui, C.; Ji, W.; Jianke, D.; Jiashi, Y. Electrically forced vibrations of partially electroded rectangular quartz plate piezoelectric resonators. Int. J. Acoust. Vib. 2017, 22, 161. [Google Scholar]
- Yao, F.-Z.; Wang, K.; Cheng, L.-Q.; Zhang, X.; Zhang, W.; Zhu, F.; Li, J.-F. Nanodomain engineered (k, na)nbo3 lead-free piezoceramics: Enhanced thermal and cycling reliabilities. J. Am. Ceram. Soc. 2015, 98, 448–454. [Google Scholar] [CrossRef]
- Alassi, A.; Benammar, M.; Brett, D. Quartz crystal microbalance electronic interfacing systems: A review. Sensors 2017, 17, 2799. [Google Scholar] [CrossRef]
- Matko, V. A comparison of frequency pullability in oscillators using a single at-cut quartz crystal and those using two single at-cut crystals connected in parallel with a series load capacitance or series load inductance. Sensors 2006, 6, 746–755. [Google Scholar] [CrossRef]
- Zhao, Z.; Lai, J.-S.; Cho, Y. Dual-mode double-carrier-based sinusoidal pulse width modulation inverter with adaptive smooth transition control between modes. IEEE Trans. Ind. Electron. 2013, 60, 2094–2103. [Google Scholar] [CrossRef]
- Kiatsookkanatorn, P.; Sangwongwanich, S. A unified pwm method for matrix converters and its carrier-based realization using dipolar modulation technique. IEEE Trans. Ind. Electron. 2011, 59, 80–92. [Google Scholar] [CrossRef]
- Hati, A.; Nelson, C.W.; Howe, D.A. Oscillator pm noise reduction from correlated am noise. IEEE Trans. Ultrason. Ferr. 2016, 63, 463–469. [Google Scholar] [CrossRef]
- Spassov, L.; Gadjanova, V.; Veicheva, R.; Dulmet, B. Short- and long-term stability of resonant quartz temperature sensors. IEEE Trans. Ultrason. Ferroelectr. 2008, 55, 1626–1631. [Google Scholar] [CrossRef]
- Iguchi, S.; Fuketa, H.; Sakurai, T.; Takamiya, M. Variation-tolerant quick-start-up CMOS crystal oscillator with chirp injection and negative resistance booster. IEEE J. Solid-State Circuits 2016, 51, 496–508. [Google Scholar]
- Ruslan, R.I.; Satoh, T.; Akitsu, T. Short-term stability in the intermediate region between quartz crystal oscillation and lc oscillation. IEEJ Trans. Electr. Electron. Eng. 2012, 7, S46–S51. [Google Scholar] [CrossRef]
- Langfelder, G.; Caspani, A.; Tocchio, A. Design criteria of low-power oscillators for consumer-grade MEMS resonant sensors. IEEE Trans. Ind. Electron. 2014, 61, 567–574. [Google Scholar] [CrossRef]
- Huang, H.F.; Ye, M. Parasitic capacitance cancellation of integrated EMI filter. Prog. Electromagn. Res. B 2012, 43, 91. [Google Scholar] [CrossRef]
Sensitivity (kHz/μH) | ||
---|---|---|
Cp (pF) | 1Q | 2Q |
without Cp | 3.317 | 17.819 |
1 | 19.726 | 34.486 |
3 | 21.875 | 37.612 |
5 | 24.266 | 41.491 |
Oscillator’s Working Modes | ||||||
---|---|---|---|---|---|---|
Quartzes | 1Q | 2Q | ||||
Cp (pF) | 3 | 3 | ||||
L01 (μH) | 90.002 | 90.002 | ||||
L02 (μH) | 90.003 | 90.003 | ||||
Lref (μH) | 90.004 | 90.004 | ||||
f0ut = (f01 − fr) - (f02 − fr) (Hz) | 160 | 775 | ||||
Oscillator’s Frequency Difference Instability | ||||||
1Q | ||||||
Number of Measurements = 1 (Figure 6 and Figure 7) | ||||||
Δfout (Hz) for Specific Ranges | D1 = ± 1.5 | S1 = ± 0.30 | D3 = ± 3 | S3 = ± 2.1 | ||
Δfout (%) for Specific Ranges | D1 = ± 0.83 | S1 = ± 0.18 | D3 = ± 0.99 | S3 = ± 0.27 | ||
2Q | ||||||
Number of Measurements = 4 (Figure 6 and Figure 7) | ||||||
Δfout (Hz) for Specific Ranges | D2 = ± 2.5 | S2 = ± 0.05 | D4 = ± 6.1 | S4 = ± 0.4 | ||
Δfout (%) for Specific Ranges | D2 = ± 1.56 | S2 = ± 0.03 | D4 = ± 1.6 | S4 = ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matko, V.; Milanovic, M. Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter. Sensors 2019, 19, 2188. https://doi.org/10.3390/s19092188
Matko V, Milanovic M. Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter. Sensors. 2019; 19(9):2188. https://doi.org/10.3390/s19092188
Chicago/Turabian StyleMatko, Vojko, and Miro Milanovic. 2019. "Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter" Sensors 19, no. 9: 2188. https://doi.org/10.3390/s19092188
APA StyleMatko, V., & Milanovic, M. (2019). Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter. Sensors, 19(9), 2188. https://doi.org/10.3390/s19092188