The Piezo-resistive MC Sensor is a Fast and Accurate Sensor for the Measurement of Mechanical Muscle Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Tensiomyographic (TMG) Measurements
2.3. MC Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Esposito, D.; Andreozzi, E.; Fratini, A.; Gargiulo, G.; Savino, S.; Niola, V.; Bifulco, P. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography. Sensors 2018, 18, 2553. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Sundholm, M.; Cheng, J.; Cruz, H.; Lukowicz, P. Measuring muscle activities during gym exercises with textile pressure mapping sensors. Pervasive Mob. Comput. 2017, 38, 331–345. [Google Scholar] [CrossRef]
- Guo, J.Y.; Zheng, Y.P.; Xie, H.B.; Chen, X. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions. Med. Eng. Phys. 2010, 32, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Kenney, L.P.J.; Lisitsa, I.; Bowker, P.; Heath, G.H.; Howard, D. Dimensional change in muscle as a control signal for powered upper limb prostheses: A pilot study. Med. Eng. Phys. 1999, 21, 589–597. [Google Scholar] [CrossRef]
- Harridge, S.D.; White, M.J. A comparison of voluntary and electrically evoked isokinetic plantar flexor torque in males. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 343–348. [Google Scholar] [CrossRef]
- Moritani, T.; deVries, H.A. Reexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contraction. Am. J. Phys. Med. 1978, 57, 263–277. [Google Scholar]
- Bigland-Ritchie, B. EMG/force relations and fatigue of human voluntary contractions. Exerc. Sport Sci. Rev. 1981, 9, 75–117. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.L.; Van den Berg, J. EMG to force processing I: An electrical analogue of the Hill muscle model. J. Biomech. 1981, 14, 747–758. [Google Scholar] [CrossRef]
- Hof, A.L.; Van den Berg, J. EMG to force processing II: Estimation of parameters of the Hill muscle model for the human triceps surae by means of a calfergometer. J. Biomech. 1981, 14, 759–770. [Google Scholar] [CrossRef]
- Hof, A.L.; Van den Berg, J. EMG to force processing III: Estimation of model parameters for the human triceps surae muscle and assessment of the accuracy by means of a torque plate. J. Biomech. 1981, 14, 771–785. [Google Scholar] [CrossRef]
- Hof, A.L.; Van den Berg, J. EMG to force processing IV: Eccentric-concentric contractions on a spring-flywheel set up. J. Biomech. 1981, 14, 787–792. [Google Scholar] [CrossRef]
- Disselhorst-Klug, C.; Schmitz-Rode, T.; Rau, G. Surface electromyography and muscle force: Limits in sEMG–force relationship and new approaches for applications. Clin. Biomech. 2009, 24, 225–235. [Google Scholar] [CrossRef]
- Adams, G.R.; Duvoisin, M.R.; Dudley, G.A. Magnetic resonance imaging and electromyography as indexes of muscle function. J. Appl. Physiol. 1992, 73, 1578–1583. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, T.; Ito, M.; Ichinose, Y.; Kuno, S.; Kawakami, Y.; Fukashiro, S. Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J. Appl. Physiol. 1996, 81, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Orizio, C. Sound myogram and EMG cross-spectrum during exhausting isometric contractions in humans. J. Electromyogr. Kines. 1992, 2, 141–149. [Google Scholar] [CrossRef]
- Orizio, C. Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies. Crit. Rev. Biomed. Eng. 1993, 21, 201–243. [Google Scholar]
- Beck, T.W.; Housh, T.J.; Cramer, J.T.; Weir, J.P.; Johnson, G.O.; Coburn, J.W.; Malek, M.H.; Mielke, M. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: A comprehensive review. Biomed. Eng. Online 2005, 4, 67. [Google Scholar] [CrossRef]
- Kimura, T.; Hamada, T.; Watanabe, T.; Maeda, A.; Oya, T.; Moritani, T. Mechanomyographic responses in human biceps brachii and soleus during sustained isometric contraction. Eur. J. Appl. Physiol. 2004, 92, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Orizio, C. Electromyography: Physiology, Engineering, and Noninvasive Applications; Merletti, R., Parker, P., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 305–322. [Google Scholar]
- Valenčič, V.; Knez, N. Measuring of skeletal muscles dynamic properties. Artif. Organs 1997, 21, 240–242. [Google Scholar] [CrossRef]
- Valenčič, V.; Djordjevič, S. Influence of acute physical exercise on twitch response elicited by stimulation of skeletal muscles in man. Biomed. Eng. 2001, 2, 1–4. [Google Scholar]
- Valenčič, V.; Knez, N.; Šimunič, B. Tensiomyography: Detection of skeletal muscle response by means of radial muscle belly displacement. Biomed. Eng. 2001, 1, 1–10. [Google Scholar]
- Križaj, D.; Šimunič, B.; Žagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kines. 2008, 18, 645–651. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Moras, G.; Rodriguez-Jimenez, S.; Usach, R.; Doutres, D.M.; Maffiuletti, N.A. Inter-rater reliability of muscle contractile property measurements using noninvasive tensiomyography. J. Electromyogr. Kines. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- Šimunič, B. Between-day reliability of a method for non-invasive estimation of muscle composition. J. Electromyogr. Kines. 2012, 2, 527–530. [Google Scholar] [CrossRef]
- Ditroilo, M.; Smith, I.J.; Fairweather, M.M.; Hunter, A.M. Long-term stability of tensiomyography measured under different muscle conditions. J. Electromyogr. Kines. 2013, 23, 558–563. [Google Scholar] [CrossRef]
- de Paula Simola, R.Á.; Harms, N.; Raeder, C.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Tensiomyography reliability and prediction of changes in muscle force following heavy eccentric strength exercise using muscle mechanical properties. Sports Tech. 2015, 8, 58–66. [Google Scholar] [CrossRef]
- Pišot, R.; Narici, M.V.; Šimunič, B.; De Boer, M.; Seynnes, O.; Jurdana, M.; Biolo, G.; Mekjavić, I.B. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 2008, 104, 409–414. [Google Scholar] [CrossRef]
- de Paula Simola, R.Á.; Reader, C.; Wiewelhove, T.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J. Electromyogr. Kines. 2016, 30, 73–80. [Google Scholar] [CrossRef] [Green Version]
- García-Manso, J.M.; Rodríguez-Ruiz, D.; Rodríguez-Matoso, D.; de Saá, Y.; Sarmiento, S.; Quiroga, M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J. Sport Sci. 2011, 29, 619–625. [Google Scholar] [CrossRef]
- García-García, O.; Hernández-Mendo, A.; Serrano-Gómez, V.; Morales-Sánchez, V. Application of the generalizability theory of tensiomyography analysis of professional road cyclists. Rev. Psicol. Deporte 2013, 22, 53–60. [Google Scholar]
- Dahmane, R.; Valenčič, V.; Knez, N.; Eržen, I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med. Biol. Eng. Comput. 2001, 39, 51–55. [Google Scholar] [CrossRef]
- Dahmane, R.; Djordjevič, S.; Šimunič, B.; Valenčič, V. Spatial fiber type distribution in normal human muscle: histochemical and tensiomiographical evaluation. J. Biomech. 2005, 38, 2451–2459. [Google Scholar] [CrossRef]
- Šimunič, B.; Degens, H.; Rittweger, J.; Narici, M.; Mekjavić, I.B.; Pišot, R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sport. Exer. 2011, 43, 1619–1625. [Google Scholar] [CrossRef]
- Burger, H.; Valenčič, V.; Marinček, Č.; Kogovšek, N. Properties of musculus gluteus maximus in above-knee amputees. Clin. Biomech. 1996, 11, 35–38. [Google Scholar] [CrossRef]
- de Paula Simola, R.Á.; Harms, N.; Raeder, C.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Assessment of neuromuscular function after different strength training protocols using tensiomyography. J. Strength Cond. Res. 2015, 29, 1339–1348. [Google Scholar] [CrossRef]
- García-Manso, J.M.; Rodríguez-Matoso, D.; Sarmiento, S.; de Saa, Y.; Vaamonde, D.; Rodríguez-Ruiz, D. Effect of high-load and high-volume resistance exercise on the tensiomyographic twitch response of biceps brachii. J. Electromyogr. Kines. 2012, 22, 612–619. [Google Scholar] [CrossRef]
- Hunter, A.M.; Galloway, S.D.; Smith, I.J.; Tallent, J.; Ditroilo, M.; Fairweather, M.M. Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. J. Electromyogr. Kines. 2012, 22, 334–341. [Google Scholar] [CrossRef]
- Đorđević, S.; Stančin, S.; Meglič, A.; Milutinović, V.; Tomažič, S. MC Sensor—A Novel Method for Measurement of Muscle Tension. Sensors 2011, 11, 9411–9425. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, S.; Tomažič, S.; Narici, M.; Pišot, R.; Meglič, A. In-Vivo Measurement of Muscle Tension: Dynamic Properties of the MC Sensor during Isometric Muscle Contraction. Sensors 2014, 14, 17848–17863. [Google Scholar] [CrossRef]
- Krašna, S.; Đorđević, S.; Hribernik, M.; Trajkovski, A. A Novel Approach to Measuring Muscle Mechanics in Vehicle Collision Conditions. Sensors 2017, 17, 1389. [Google Scholar] [CrossRef]
- Mohamad, N.Z.; Hamzaid, N.A.; Davis, G.G.; Wahab, A.K.A.; Hasnan, N. Mechanomyography and Torque during FES-Evoked Muscle Contractions to Fatigue in Individuals with Spinal Cord Injury. Sensors 2017, 17, 1627. [Google Scholar] [CrossRef] [PubMed]
- Perotto, A.O.; Delagi, E.F.; Lazzeti, J.; Morrison, D. Anatomic Guide for the Electromyographer: the Limbs; Charles C. Thomas Publisher: Springfield, IL, USA, 2005. [Google Scholar]
- Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J. Physiol. 1998, 512, 603–614. [Google Scholar] [CrossRef] [Green Version]
Muscle | R(3 mm) | R(4.5 mm) | R(6 mm) |
---|---|---|---|
vastus medialis | 0.78 | 0.83 | 0.84 |
rectus femoris | 0.72 | 0.80 | 0.84 |
vastus lateralis | 0.68 | 0.74 | 0.76 |
tibialis anterior | 0.74 | 0.77 | 0.71 |
gastrocnemius medialis | 0.68 | 0.76 | 0.72 |
biceps femoris | 0.69 | 0.68 | 0.66 |
erector spinae | 0.62 | 0.49 | 0.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meglič, A.; Uršič, M.; Škorjanc, A.; Đorđević, S.; Belušič, G. The Piezo-resistive MC Sensor is a Fast and Accurate Sensor for the Measurement of Mechanical Muscle Activity. Sensors 2019, 19, 2108. https://doi.org/10.3390/s19092108
Meglič A, Uršič M, Škorjanc A, Đorđević S, Belušič G. The Piezo-resistive MC Sensor is a Fast and Accurate Sensor for the Measurement of Mechanical Muscle Activity. Sensors. 2019; 19(9):2108. https://doi.org/10.3390/s19092108
Chicago/Turabian StyleMeglič, Andrej, Mojca Uršič, Aleš Škorjanc, Srđan Đorđević, and Gregor Belušič. 2019. "The Piezo-resistive MC Sensor is a Fast and Accurate Sensor for the Measurement of Mechanical Muscle Activity" Sensors 19, no. 9: 2108. https://doi.org/10.3390/s19092108
APA StyleMeglič, A., Uršič, M., Škorjanc, A., Đorđević, S., & Belušič, G. (2019). The Piezo-resistive MC Sensor is a Fast and Accurate Sensor for the Measurement of Mechanical Muscle Activity. Sensors, 19(9), 2108. https://doi.org/10.3390/s19092108