A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fajkus, M.; Nedoma, J.; Martinek, R.; Vasinek, V.; Nazeran, H.; Siska, P. A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors 2017, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Mu, Z.; Li, J. Miniature temperature sensor based on polymer-packaged silica microfiber resonator. J. Phys. Chem. Solids 2019, 129, 307–311. [Google Scholar] [CrossRef]
- Mamidi, V.R.; Kamineni, S.; Ravinuthala, L.S.P.; Thumu, V.; Pachava, V.R. Characterization of encapsulating materials for fiber Bragg grating-based temperature sensors. Fiber Integr. Opt. 2014, 33, 325–335. [Google Scholar] [CrossRef]
- Ghazanfari, A.; Li, W.; Leu, M.C.; Zhuang, Y.; Huang, J. Advanced ceramic components with embedded sapphire optical fiber sensors for high temperature applications. Mater. Des. 2016, 112, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.; Min, B.K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Mannuf.-Green Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.G.; Chen, H.L.; Li, J.S.; Fan, Z.K. High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 2015, 8, 046701. [Google Scholar] [CrossRef]
- Lou, J.Y.; Wang, Y.P.; Tong, L.M. Microfiber optical sensors: A review. Sensors 2014, 14, 5823–5844. [Google Scholar] [CrossRef] [PubMed]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Y.; Hoehler, M.S.; Chen, G. Review of fiber optic sensors for structural fire engineering. Sensors 2019, 19, 877. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Yang, C.; Tong, W.; He, Z. Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber. Opt. Express 2018, 26, 20562–20571. [Google Scholar] [CrossRef]
- Urrutia, A.; Goicoechea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuator B Chem. 2018, 227, 135–141. [Google Scholar] [CrossRef]
- Hernández-Romano, I.; Cruz-Garcia, M.A.; Moreno-Hernández, C.; Monzón-Hernández, D.; López-Figueroa, E.O.; Paredes-Gallardo, O.E.; Torres-Cisneros, M.; Villatoro, J. Optical fiber temperature sensor based on a microcavity with polymer overlay. Opt. Express 2016, 24, 5654–5661. [Google Scholar] [CrossRef]
- Sun, H.; Luo, H.; Wu, X.; Liang, L.; Wang, Y.; Ma, X.; Zhang, J.; Hu, M.; Qiao, X. Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film. Sens. Actuators B Chem. 2017, 245, 423–427. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef]
- Hong, C.Y.; Zhang, Y.F.; Zhang, M.X.; Leung, L.M.G.; Liu, L.Q. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques. Sens. Actuators A Phys. 2016, 244, 184–197. [Google Scholar] [CrossRef]
- Zhang, D.P.; Wang, J.; Wang, Y.J.; Dai, X. A fast response temperature sensor based on fiber Bragg grating. Meas. Sci. Technol. 2014, 25, 075105. [Google Scholar] [CrossRef]
- Gonzalez-Reyna, M.A.; Alvarado-Mendez, E.; Estudillo-Ayala, J.M.; Vargas-Rodriguez, E.; Sosa-Morales, M.E.; Sierra-Hernandez, J.M.; Jauregui-Vazquez, D.; Rojas-Laguna, R. Laser temperature sensor based on a fiber Bragg grating. IEEE Photonics Technol. Lett. 2015, 27, 1141–1144. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tian, X.J.; Xue, L.L.; Zhang, Q.J.; Yang, L.; Zhu, B. Super-high sensitivity of fiber temperature sensor based on leaky-mode bent SMS structure. IEEE Photonic Technol. Lett. 2013, 25, 560–563. [Google Scholar] [CrossRef]
- Moraleda, A.T.; García, C.V.; Zaballa, J.Z.; Arrue, J. A temperature sensor based on a polymer optical fiber macro-bend. Sensors 2013, 13, 13076–13089. [Google Scholar] [CrossRef]
- Geng, Y.F.; Li, X.J.; Tan, X.L.; Deng, Y.L.; Hong, X.M. Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer. IEEE Sens. J. 2014, 14, 167–170. [Google Scholar] [CrossRef]
- Silva, S.; Pachon, E.G.; Franco, M.A.; Hayashi, J.G.; Malcata, F.X.; Frazão, O.; Jorge, P.; Cordeiro, C.M. Ultrahigh-sensitivity temperature fiber sensor based on multimode interference. Appl. Opt. 2012, 51, 3236–3242. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.H.; Wang, X.B.; Sun, S.Q.; Jiang, M.H.; Xu, Q.; Wang, F.; Wu, Y.D.; Zhang, D.M. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach–Zehnder interferometer. J. Opt. 2018, 20, 045803. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber. Sens. Actuators B Chem. 2018, 258, 822–828. [Google Scholar] [CrossRef]
- Reyes-Vera, E.; Cordeiro, C.M.; Torres, P. Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal. Appl. Opt. 2017, 56, 156–162. [Google Scholar] [CrossRef]
- Weng, S.; Pei, L.; Wang, J.; Ning, T.; Li, J. High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 2017, 5, 103–107. [Google Scholar] [CrossRef]
- Wales, M.D.; Clark, P.; Thompson, K.; Wilson, Z.; Wilson, J.; Adams, C. Multicore fiber temperature sensor with fast response times. OSA Contin. 2018, 1, 764–771. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M.J. A polymer optical fiber temperature sensor based on material features. Sensors 2018, 18, 301. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M. Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 2018, 18, 916. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera, A.; Marques, C.; Pontes, M.J. Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature. Appl. Opt. 2018, 57, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Raji, Y.M.; Lin, H.S.; Ibrahim, S.A.; Mokhtar, M.R.; Yusoff, Z. Intensity-modulated abrupt tapered fiber Mach-Zehnder interferometer for the simultaneous sensing of temperature and curvature. Opt. Laser Technol. 2016, 86, 8–13. [Google Scholar] [CrossRef]
- Chen, P.C.; Shu, X.W. Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing. Opt. Express 2018, 26, 5292–5299. [Google Scholar] [CrossRef]
- Gomes, A.D.; Becker, M.; Dellith, J.; Zibaii, M.I.; Latifi, H.; Rothhardt, M.; Bartelt, H.; Frazão, O. Multimode Fabry–Perot interferometer probe based on Vernier effect for enhanced temperature sensing. Sensors 2019, 19, 453. [Google Scholar] [CrossRef] [PubMed]
- Poeggel, S.; Duraibabu, D.; Lacraz, A.; Kalli, K.; Tosi, D.; Leen, G.; Lewis, E. Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry–Perot interferometer pressure sensor. IEEE Sens. J. 2016, 16, 3396–3402. [Google Scholar] [CrossRef]
- Wang, R.H.; Qiao, X.G. Intrinsic Fabry-Pérot interferometer based on concave well on fiber end. IEEE Photonic Technol. Lett. 2014, 26, 1430–1433. [Google Scholar] [CrossRef]
- Zhang, G.L.; Yang, M.H.; Wang, M. Large temperature sensitivity of fiber-optic extrinsic Fabry–Perot interferometer based on polymer-filled glass capillary. Opt. Fiber Technol. 2013, 19, 618–622. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Du, B.; Zhang, F.; Guo, K.; Wang, Y. Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers. Opt. Lett. 2018, 43, 6009–6012. [Google Scholar] [CrossRef]
- Yu, H.H.; Wang, Y.; Ma, J.; Zheng, Z.; Luo, Z.Z.; Zheng, Y. Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber. Sensors 2018, 18, 273. [Google Scholar]
- Zhang, X.; Peng, W.; Zhang, Y. Fiber Fabry–Perot interferometer with controllable temperature sensitivity. Opt. Lett. 2015, 40, 5658–5661. [Google Scholar] [CrossRef]
- Liu, S.Q.; Ji, Y.K.; Yang, J.; Sun, W.M.; Li, H.Y. Nafion film temperature/humidity sensing based on optical fiber Fabry-Perot interference. Sens. Actuators A Phys. 2018, 269, 313–321. [Google Scholar] [CrossRef]
Mechanism | Structure | Sensitivity | Range | Reference |
---|---|---|---|---|
Grating interference | Copper tube/FBG | 27.6 pm/°C | 0–35 °C | [16] |
FBG | 18.8 pm/°C | 20–90 °C | [17] | |
Mach-Zehnder interference | SMS/Microfiber | 6.5 nm/°C | 51–65 °C | [18] |
Micro-bend fiber | 1.92 × 10−3/°C | 29–52 °C | [19] | |
SMS/Liquid | −1.88 nm/°C | 0–80 °C | [21] | |
Liquid cored PCF | −2.15 nm/°C | 20–80 °C | [6] | |
Liquid-filled PCF | −1.83 nm/°C | 23–58 °C | [20] | |
C-typed PCF | −7.609 nm/°C | 15–30 °C | [23] | |
NOA 73/PMMA | −431 pm/°C | 25–75 °C | [22] | |
PMMA | 1.04 × 10−3/°C | 25–120 °C | [27] | |
Abrupt tapered fiber | 0.0833 dBm/°C | 30–50 °C | [30] | |
Fabry-Perot interference | Single RI turning dot | 13.9 pm/°C 18.6 pm/°C | 100–500 °C 500–1000 °C | [31] |
Open microcavity | −654 pm/°C | 30–120 °C | [32] | |
HC-PBF/HCF splicing | 17 nm/°C | 100–800 °C | [36] | |
SMF/PCF splicing | 15.61 pm/°C | 300–1200 °C | [37] | |
LOCTITE 3493 film | ~5.2 nm/°C | 15–22 °C | [35] | |
Microfiber taper | 1.97 pm/°C | 50–150 °C | [38] | |
Nafion film | 2.71 nm/°C | −15–65 °C | [39] | |
Microfiber/SMF/PDMS | 10.67 nm/°C | 43–50 °C | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Y.; Ren, C.; Sui, Z.; Li, J. A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference. Sensors 2019, 19, 1819. https://doi.org/10.3390/s19081819
Li Z, Zhang Y, Ren C, Sui Z, Li J. A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference. Sensors. 2019; 19(8):1819. https://doi.org/10.3390/s19081819
Chicago/Turabian StyleLi, Zhoubing, Yue Zhang, Chunqiao Ren, Zhengqi Sui, and Jin Li. 2019. "A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference" Sensors 19, no. 8: 1819. https://doi.org/10.3390/s19081819
APA StyleLi, Z., Zhang, Y., Ren, C., Sui, Z., & Li, J. (2019). A High Sensitivity Temperature Sensing Probe Based on Microfiber Fabry-Perot Interference. Sensors, 19(8), 1819. https://doi.org/10.3390/s19081819