Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides
Abstract
1. Introduction
2. Fabrication
2.1. Hollow Waveguide
2.2. Module Substrates
2.3. eHWG Series
3. Measurement
3.1. Loss Property
3.2. Absorbance
4. Discussion
4.1. eHWG with Ag or AgI/Ag Waveguides
4.2. eHWG with AgI/Ag Waveguides with Various IDs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.S.; Menegazzo, N.; Young, C.; Chan, J.; Carter, C.; Mizaikoff, B. Mid-infrared trace gas analysis with single-pass fourier transform infrared hollow waveguide gas sensors. Appl. Spectrosc. 2009, 63, 331–337. [Google Scholar] [CrossRef]
- Mizaikoff, B. Mid-IR fiber-optic sensors. Anal. Chem. 2003, 75, 258A–267A. [Google Scholar] [CrossRef] [PubMed]
- Hoo, Y.L.; Jin, W.; Ho, H.L.; Ju, J.; Wang, D.N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B Chem. 2005, 105, 183–186. [Google Scholar] [CrossRef]
- Dooly, G.; Lewis, E.; Fitzpatrick, C. On-board monitoring of vehicle exhaust emissions using an ultraviolet optical fiber based sensor. J. Opt. A-Pure Appl. Opt. 2007, 9, S24–S31. [Google Scholar] [CrossRef]
- Wei, J.Y.; Wei, Y.Q.; Zhu, X.S.; Shi, Y.W. Miniaturization of hollow waveguide cell for spectroscopic gas sensing. Sens. Actuators B Chem. 2017, 243, 254–261. [Google Scholar] [CrossRef]
- Seki, A.; Iwai, K.; Katagiri, T.; Matsuura, Y. Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system. Appl. Phys. Express 2017, 10, 072503. [Google Scholar] [CrossRef]
- Shi, Y.W.; Ito, K.; Ma, L.; Yoshida, T.; Matsuura, Y.; Miyagi, M. Fabrication of a polymer-coated silver hollow optical fiber with high performance. Appl. Opt. 2006, 45, 6736–6740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, X.S.; Shi, Y.W. Fabrication and performance investigation of the EVA/Ag coated hollow fiber. Opt. Laser Technol. 2018, 111, 802–809. [Google Scholar] [CrossRef]
- Wilk, A.; Carter, J.C.; Chrisp, M.; Manuel, A.M.; Mirkarimi, P.; Alameda, J.B.; Mizaikoff, B. Substrate-integrated hollow waveguides: A new level of integration in mid-infrared gas sensing. Anal. Chem. 2013, 85, 11205–11210. [Google Scholar] [CrossRef] [PubMed]
- Tütüncü, E.; Nägele, M.; Fuchs, P.; Fischer, M.; Mizaikoff, B. iHWG-ICL: Methane sensing with substrate-integrated hollow waveguides directly coupled to interband cascade lasers. ACS Sens. 2016, 1, 847–851. [Google Scholar]
- Petruci, J.F.S.; Fortes, P.R.; Kokoric, V.; Wilk, A.; Raimundo, I.M.; Cardoso, A.A.; Mizaikoff, B. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst 2014, 39, 198–203. [Google Scholar] [CrossRef]
- Tutuncu, E.; Kokoric, V.; Szedlak, R.; MacFarland, D.; Zederbauer, T.; Detz, H.; Andrews, A.M.; Schrenk, W.; Strasser, G.; Mizaikoff, B. Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. Analyst 2016, 141, 6202–6207. [Google Scholar] [CrossRef]
- Stach, R.; Haas, J.; Tütüncü, E.; Daboss, S.; Kranz, C.; Mizaikoff, B. polyHWG: 3D printed substrate-integrated hollow waveguides for mid-infrared gas sensing. ACS Sens. 2017, 2, 1700–1705. [Google Scholar] [CrossRef]
- Hagemann, L.T.; McCartney, M.M.; Fung, A.G.; Peirano, D.J.; Davis, C.E.; Mizaikoff, B. Portable combination of Fourier transform infrared spectroscopy and differential mobility spectrometry for advanced vapor phase analysis. Analyst 2018, 143, 5683–5691. [Google Scholar] [CrossRef]
- Petruci, J.F.S.; Wilk, A.; Cardoso, A.A.; Mizaikoff, B. A hyphenated preconcentrator-infrared-hollow-waveguide sensor system for N2O Sensing. Sci. Lett. 2018, 8, 1337–1342. [Google Scholar]
- Miyagi, M.; Harada, K.; Kawakami, S. Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature. IEEE Trans. Microwave Theory Tech. 1984, 32, 513–521. [Google Scholar] [CrossRef]
- Harrington, J.A. A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 2000, 19, 211–227. [Google Scholar] [CrossRef]
- Fortes, P.R.; Petruci, J.F.; Wilk, A.; Cardoso, A.A.; Jr, I.M.R.; Mizaikoff, B. Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers. J. Opt. 2014, 16, 094006. [Google Scholar] [CrossRef]
- Roshan, G.; Harrington, J.A. Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings. Appl. Opt. 2005, 44, 6449–6455. [Google Scholar]
- Gal, U.; Harrington, J.A.; Ben-David, M.; Bledt, C.; Syzonenko, N.; Gannot, I. Coherent hollow-core waveguide bundles for thermal imaging. Appl. Opt. 2010, 49, 4700–4709. [Google Scholar] [CrossRef]
- Sun, B.S.; Zeng, X.; Iwai, K.; Miyagi, M.; Chi, N.; Shi, Y.W. Experimental investigation on liquid-phase coating methods for multilayer infrared hollow fiber. Opt. Fiber Technol. 2011, 17, 281–285. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, B.H.; He, Y.J.; Sun, B.S.; Iwai, K.; Miyagi, M.; Shi, Y.W. Fabrication and characterization of AgI/Ag hollow fibers for near-infrared lasers. Opt. Laser Technol. 2013, 49, 209–212. [Google Scholar] [CrossRef]
- Chen, K.W.; Zhang, X.W.; Zhao, Z.Q.; Wei, J.Y.; Zhu, X.S.; Shi, Y.W. Big bore and extremely flexible mid-infrared hollow waveguide for gas absorption module. Sens. Actuators A Phys. 2019, 285, 45–49. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Lu, W.J.; Yao, Z.R.; Wei, Y.Q.; Shi, Y.W. Optimization of hollow waveguides as absorption cell for spectroscopic gas sensing. Appl. Spectrosc. 2013, 67, 301–306. [Google Scholar] [CrossRef]
- Inczédy, J.; Lengyel, T.; Ure, A.M.; Gelencser, A.; Hulanicki, A. (Eds.) IUPAC Compendium of Analytical Nomenclature: Definitive Rules, 3rd ed.; Blackwell Science: Oxford, UK, 1997. [Google Scholar]
ID (mm) | eHWG-1 (dB) | eHWG-2 (dB) | eHWG-3 (dB) | eHWG-4 (dB) |
---|---|---|---|---|
0.7 | 2.38 | 3.29 | 3.46 | 4.56 |
1.4 | 1.29 | 2.80 | 4.14 | 4.98 |
2.0 | 1.14 | 3.21 | 4.68 | 4.83 |
Waveguide Type | eHWG series | SD of Blank (dB*10−3) | Sensitivity (dB/ppm*10−4) | LOD (ppm) | Correlation Coefficient |
---|---|---|---|---|---|
Ag | eHWG-1 | 3.562 | 6.5 | 16.5 | 0.98894 |
Ag | eHWG-2 | 9.644 | 13.4 | 21.6 | 0.988 |
Ag | eHWG-3 | 15.898 | 19.9 | 24.0 | 0.99121 |
Ag | eHWG-4 | 24.202 | 27.3 | 26.6 | 0.98554 |
AgI/Ag | eHWG-1 | 2.599 | 6.13 | 12.8 | 0.98636 |
AgI/Ag | eHWG-2 | 3.892 | 11.8 | 9.9 | 0.98832 |
AgI/Ag | eHWG-3 | 4.324 | 17.7 | 7.4 | 0.98423 |
AgI/Ag | eHWG-4 | 4.554 | 23.4 | 5.8 | 0.99146 |
ID (mm) | AgI/Ag Waveguide | SD of Blank (dB*10−3) | Sensitivity (dB/ppm*10−4) | LOD (ppm) | Correlation Coefficient |
---|---|---|---|---|---|
0.7 | eHWG-1 | 13.317 | 7.5 | 53.3 | 0.98066 |
0.7 | eHWG-2 | 16.913 | 14 | 36.3 | 0.99145 |
0.7 | eHWG-3 | 18.969 | 17 | 33.5 | 0.97047 |
0.7 | eHWG-4 | 25.674 | 28.7 | 26.9 | 0.98524 |
1.4 | eHWG-1 | 2.599 | 6.1 | 12.8 | 0.98636 |
1.4 | eHWG-2 | 3.892 | 11.8 | 9.9 | 0.98832 |
1.4 | eHWG-3 | 4.324 | 17.7 | 7.4 | 0.98423 |
1.4 | eHWG-4 | 4.554 | 23.4 | 5.8 | 0.99146 |
2.0 | eHWG-1 | 1.126 | 5.4 | 6.3 | 0.99643 |
2.0 | eHWG-2 | 2.123 | 12.5 | 5.1 | 0.99595 |
2.0 | eHWG-3 | 2.175 | 14.7 | 4.5 | 0.99499 |
2.0 | eHWG-4 | 2.320 | 26 | 2.7 | 0.99702 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Zhao, Z.; Zhang, X.; Zhang, X.; Zhu, X.; Shi, Y. Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides. Sensors 2019, 19, 1698. https://doi.org/10.3390/s19071698
Chen K, Zhao Z, Zhang X, Zhang X, Zhu X, Shi Y. Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides. Sensors. 2019; 19(7):1698. https://doi.org/10.3390/s19071698
Chicago/Turabian StyleChen, Kewang, Zeqiao Zhao, Xuewen Zhang, Xian Zhang, Xiaosong Zhu, and Yiwei Shi. 2019. "Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides" Sensors 19, no. 7: 1698. https://doi.org/10.3390/s19071698
APA StyleChen, K., Zhao, Z., Zhang, X., Zhang, X., Zhu, X., & Shi, Y. (2019). Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides. Sensors, 19(7), 1698. https://doi.org/10.3390/s19071698