# Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Set-Up

## 3. Methodology

#### 3.1. Experimental Procedure

#### 3.2. Thermographic Processing

#### 3.2.1. Detecting the Boiler

#### 3.2.2. Tracking the Edges

#### 3.2.3. Improving the Edges

_{1}and Q

_{3}are the first and the third quartiles, respectively, and IQR is the interquartile range.

#### 3.2.4. Defining the Walls

#### 3.2.5. Tracing Paths

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Domingues, A.; Santos, H.; Costa, M. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle. Energy
**2013**, 49, 71–85. [Google Scholar] [CrossRef] - Park, T.; Teng, H.; Hunter, G.L.; van der Velde, B.; Klaver, J. A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines—Experimental Results. SAE Int.
**2011**. [Google Scholar] [CrossRef] - Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy
**2011**, 36, 3406–3418. [Google Scholar] [CrossRef] [Green Version] - Wang, T.; Zhang, Y.; Peng, Z.; Shu, G. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev.
**2011**, 15, 2862–2871. [Google Scholar] [CrossRef] - He, M.; Zhang, X.; Zeng, K.; Gao, K. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine. Energy
**2011**, 36, 6821–6829. [Google Scholar] [CrossRef] - Horst, T.A.; Rottengruber, H.S.; Seifert, M.; Ringler, J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Appl. Energy
**2013**, 105, 293–303. [Google Scholar] [CrossRef] - Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy
**2007**, 32, 1210–1221. [Google Scholar] [CrossRef] - Schmid, H. Less Emission Through Waste Heat Recovery. In Proceedings of the Green Ship Technology Conference, London, UK, 28–29 April 2004. [Google Scholar]
- Teng, H. Waste Heat Recovery Concept to Reduce Fuel Consumption and Heat Rejection from a Diesel Engine. SAE Int.
**2010**. [Google Scholar] [CrossRef] - Silva, J.J.D.; Maribondo, J.F. Analysis of lubricating oils in shear friction tests using infrared thermography. Infrared Phys. Technol.
**2018**, 89, 291–298. [Google Scholar] [CrossRef] - Liu, T.L.; Pan, C. Infrared thermography measurement of two-phase boiling flow heat transfer in a microchannel. Appl. Therm. Eng.
**2016**, 94, 568–578. [Google Scholar] [CrossRef] - Hetsroni, G.; Mosyak, A.; Segal, Z.; Ziskind, G. A uniform temperature heat sink for cooling of electronic devices. Int. J. Heat Mass Transf.
**2002**, 45, 3275–3286. [Google Scholar] [CrossRef] - Xu, J.L.; Zhang, W.; Wang, Q.W.; Su, Q.C. Flow instability and transient flow patterns inside intercrossed silicon microchannel array in a micro-timescale. Int. J. Multiph. Flow
**2006**, 32, 568–592. [Google Scholar] [CrossRef] - Li, H.; Hrnjak, P. Quantification of liquid refrigerant distribution in parallel flow microchannel heat exchanger using infrared thermography. Appl. Therm. Eng.
**2015**, 78, 410–418. [Google Scholar] [CrossRef] [Green Version] - Leblay, P.; Henry, J.F.; Caron, D.; Leducq, D.; Bontemps, A.; Fournaison, L. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect. In Proceedings of the 11th Quantitative InfraRed Thermography, Naples, Italy, 11–14 June 2012. [Google Scholar]
- Carlomagno, G.M.; Cardone, G. Infrared thermography for convective heat transfer measurements. Exp. Fluids
**2010**, 49, 1187–1218. [Google Scholar] [CrossRef] [Green Version] - Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines. Energy
**2018**, 158, 396–416. [Google Scholar] [CrossRef] - Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM
**1972**, 15, 11–15. [Google Scholar] [CrossRef] - Hough, P.V.C. Method for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Torrente, M.L.; Biasotti, S.; Falcidieno, B. Recognition of feature curves on 3D shapes using an algebraic approach to Hough transforms. Pattern Recogn.
**2018**, 73, 111–130. [Google Scholar] [CrossRef] [Green Version]

**Figure 5.**(

**a**) Sample of the core of the boiler detected. (

**b**) Sample of thermography after filtering cold pixels in the background.

**Figure 6.**Three-dimensional (3D) graph of the temperatures identified as belonging to the boiler at this step of the procedure.

**Figure 7.**(

**a**) The reconstruction of the outermost edges is represented in the color green. (

**b**) The reconstruction of the middle edge is represented in the color white.

**Figure 8.**Walls detected by the developed methodology: (

**a**) main edges detected, (

**b**) walls of interest, (

**c**) studied path positions.

**Figure 10.**Thermography of the boiler with the operating conditions described in Table 4.

**Figure 11.**Graphs of horizontal temperature profile: (

**a**) working fluid (WF) paths and (

**b**) in the air.

**Figure 13.**Comparison of temperature measurements following the methodology, in the same line, at two different moments. Analysis of a vertical line (

**a**), and a horizontal line (

**b**).

Components | Remarks | |
---|---|---|

Air circuit | Air blower | Power: 4 W Voltage: 345–415 V Maximum flow rate: 318 m ^{3}/hMaximum pressure drop: 390 mbar |

Air heating | Atmospheric pressure Made of a resistance of 27 kW at 240 V AC Maximum temperature: 750 °C | |

WF circuit | Pump (ethanol) | Power: 1.5 kW Maximum flow rate: 50 L/h Maximum speed: 233 rpm |

Condenser | Heat exchanger with plates Ethanol refrigerated with water | |

Refrigerant circuit | Pump (water) | Flow rate: 3.25 L/h Speed: 2820 rpm Power: 0.37kW |

Heating unit | Maximum air flow rate: 4080 m^{3}/hRefrigeration capacity: 20.1 kW Heating capacity: 30.7 kW Maximum water flow rate: 57.6 L/min |

Sensor | Remarks | Uncertainty |
---|---|---|

Air | Sensor K | 1.5 °C |

Water/ethanol | Sensor T | 0.5 °C |

Pressure drop | Differential pressure transducer | 0.4% |

Mass flow rate | Coriolis mass flow meter | 0.11% |

Model | Flir E60 |
---|---|

Range of temperature | −20 °C to 650 °C |

Thermal sensitivity | <0.05° to 30° |

Resolution | 320 × 240 pixels |

Ethanol | Dry Air | |
---|---|---|

Inlet mass flow (kg/h) | 30 | 70 |

Inlet temperature (°C) | 80 | 700 |

Pressure outlet (bar-a) | 21 | 1 |

Outlet temperature (°C) | 275.14 | 131.44 |

Performance (%) | 85.3 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Paz, C.; Suárez, E.; Concheiro, M.; Diaz, A.
Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC. *Sensors* **2019**, *19*, 1680.
https://doi.org/10.3390/s19071680

**AMA Style**

Paz C, Suárez E, Concheiro M, Diaz A.
Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC. *Sensors*. 2019; 19(7):1680.
https://doi.org/10.3390/s19071680

**Chicago/Turabian Style**

Paz, Concepción, Eduardo Suárez, Miguel Concheiro, and Antonio Diaz.
2019. "Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC" *Sensors* 19, no. 7: 1680.
https://doi.org/10.3390/s19071680