Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry–Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method
Abstract
:1. Introduction
2. System and Principle
2.1. Structure and Mechanism of the Fiber-Optic Compound FP Pressure Sensor
2.2. White Light Non-Scanning Correlation Interrogation System and Principle
2.3. Peak Positioning Algorithm of the Correlation Interferometric Signal
3. Experimental Verification
3.1. Experimental Setup
3.2. System Calibration
3.3. Pressure Measurement Based on the Interrogation System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. Mater. Devices Syst. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Z.; Shen, F.; Wang, A. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements. Opt. Lett. 2005, 30, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhou, X. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 2011, 1, 72–83. [Google Scholar] [CrossRef]
- Wang, G. Quadrature phase-shifted white-light interferometry for the measurement of short-cavity extrinsic fabry–perot interferometric sensors. Microw. Opt. Technol. Lett. 2011, 53, 1011–1015. [Google Scholar] [CrossRef]
- Chen, J.; Chen, D.; Geng, J.; Cai, H.; Fang, Z. Stabilization of optical Fabry–Perot sensor by active feedback control of diode laser. Sens. Actuators A Phys. 2008, 148, 376–380. [Google Scholar] [CrossRef]
- Bremer, K.; Lewis, E.; Leen, G.; Moss, B.; Mueller, I.A.R. Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors. IEEE Sens. J. 2012, 12, 133–138. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Z. Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser. Opt. Laser Technol. 2013, 51, 43–46. [Google Scholar] [CrossRef]
- Jiang, Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors. IEEE Photonics Technol. Lett. 2008, 20, 75–77. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Q. Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE Sens. J. 2011, 11, 1602–1606. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Y.; Shen, F.; Pickrell, G.R.; Wang, A. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors. Opt. Lett. 2004, 29, 1736–1738. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, F.; Pan, Y.; Wang, J.; Hu, Z.; Hu, Y. High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2015, 22, 1–6. [Google Scholar] [CrossRef]
- Lee, C.E.; Taylor, H.F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. Lightwave Technol. J. 1991, 9, 129–134. [Google Scholar] [CrossRef]
- Chen, S.; Palmer, A.W.; Grattan, K.T.V.; Meggitt, B.T.; Martin, S. Study of electronically-scanned optical-fibre white-light Fizeau interferometer. Electron. Lett. 1991, 27, 1032–1034. [Google Scholar] [CrossRef]
- Dändliker, R.; Zimmermann, E.; Frosio, G. Electronically scanned white-light interferometry: A novel noise-resistant signal processing. Opt. Lett. 1992, 17, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Belleville, C.; Duplain, G. White-light interferometric multimode fiber-optic strain sensor. Opt. Lett. 1993, 18, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.H.; Yanong, N.; Xiangqian, J.; Palmer, A.W.; Meggitt, B.T.; Grattan, K.T.V. A novel electronically scanned white-light interferometer using a Mach-Zehnder approach. J. Lightwave Technol. 1996, 14, 397–402. [Google Scholar] [CrossRef]
- Yu, Z.; Tian, Z.; Wang, A. Simple interrogator for optical fiber-based white light Fabry–Perot interferometers. Opt. Lett. 2017, 42, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Pechstedt, R.D. Fibre optic pressure and temperature sensor for applications in harsh environments. In European Workshop on Optical Fibre Sensors; International Society for Optics and Photonics: Bellingham, WA, USA, 2013. [Google Scholar]
- Yi, J.; Lally, E.; Wang, A.; Xu, Y. Demonstration of an All-Sapphire Fabry–Pérot Cavity for Pressure Sensing. IEEE Photonics Technol. Lett. 2011, 23, 9–11. [Google Scholar] [CrossRef]
- Pulliam, W.J.; Russler, P.M.; Mlcak, R.; Murphy, K.A.; Kozikowski, C.L. Micromachined SiC fiber optic pressure sensors for high-temperature aerospace applications. Proc. SPIE 2000, 4202, 21–30. [Google Scholar]
- Zhang, Y.; Huang, J.; Lan, X.; Yuan, L.; Xiao, H. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry–Perot interferometer and intrinsic Fabry–Perot interferometer sensors. Opt. Eng. 2014, 53, 067101. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Qin, Z.; Zou, S. Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing. IEEE Photonics Technol. Lett. 2014, 26, 2070–2073. [Google Scholar]
- Macpherson, W.N.; Kilpatrick, J.M.; Barton, J.S.; Julian, D.C. Miniature fiber optic pressure sensors for turbomachinery applications. Rev. Sci. Instrum. 1999, 70, 1868–1874. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, A. Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 2005, 17, 447–449. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Lv, W.; Wang, W.; Chen, Q.; Zhang, X.; Chen, H.; Ma, Z. Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry–Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method. Sensors 2019, 19, 1628. https://doi.org/10.3390/s19071628
Guo Z, Lv W, Wang W, Chen Q, Zhang X, Chen H, Ma Z. Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry–Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method. Sensors. 2019; 19(7):1628. https://doi.org/10.3390/s19071628
Chicago/Turabian StyleGuo, Zilong, Wentao Lv, Wei Wang, Qingqing Chen, Xiongxing Zhang, Haibin Chen, and Zhibo Ma. 2019. "Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry–Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method" Sensors 19, no. 7: 1628. https://doi.org/10.3390/s19071628
APA StyleGuo, Z., Lv, W., Wang, W., Chen, Q., Zhang, X., Chen, H., & Ma, Z. (2019). Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry–Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method. Sensors, 19(7), 1628. https://doi.org/10.3390/s19071628