On the Use of Oblique Acoustic Leakage to Measure the Wavenumber Spectrum of Propagating Lamb Waves
Abstract
:1. Introduction
2. Theory and Concept
2.1. General Theory and Concept
- Due to the large difference between the wave speeds in air and metals, the acoustic leakage from Lamb waves is in the form of obliquely-travelling bulk waves (except for the A0 mode at low frequencies that have a phase velocity less than ).
- As a result of Snell’s law, each angle of incidence of the obliquely-travelling acoustic leakage corresponds with the value of the waves travelling within the solid. This is equal to the wavenumber of the Lamb waves travelling in the x-direction.
2.2. Adjusting for Mode-Dependent Acoustic Leakage
3. Experimental Setup
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Plane wave propagation angle in media n with respect to the surface’s normal | |
2nd-order stress tensor | |
Mass per unit volume of an elastic solid | |
Particle displacement vector | |
4th-order stiffness tensor of an elastic solid | |
2nd-order strain tensor | |
Wavevector | |
Normalized wavevector | |
Spatial coordinate vector | |
Frequency in terms of radians/second | |
Longitudinal wave speed in an elastic solid | |
Shear wave speed in an elastic solid | |
Ambient mass per unit volume in air | |
Change in mass per unit volume in air | |
Change in pressure in air | |
Wave speed in air | |
Change in the particle velocity in air | |
Acoustic leakage’s particle displacement amplitude | |
H | Plate waveguide thickness |
Indices such that: i,j,k,l = x,y,z |
References
- Hayashi, T.; Inoue, D. Calculation of leaky Lamb waves with a semi-analytical finite element method. Ultrasonics 2014, 54, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, M.; Marzani, A.; Bartoli, I. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape. Ultrasonics 2014, 54, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.; Fan, Z. SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid. J. Sound Vib. 2017, 406, 181–196. [Google Scholar] [CrossRef]
- Courouble, B.; Moufle, J. Evaluation of ultrasonic techniques by visualization of ultrasound in water and in transparent solids. In Ultrasonics International; Butterworth Heinemann: Oxford, UK, 1991; Volume 91, pp. 135–138. [Google Scholar]
- Tuzzeo, D.; Lanza di Scalea, F. Noncontact Air-Coupled Guided Wave Ultrasonics for Detection of Thinning Defects in Aluminum Plates. Res. Nondestruct. Eval. 2001, 13, 61–78. [Google Scholar] [CrossRef]
- Castaings, M.; Hosten, B. Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT E Int. 2001, 34, 249–258. [Google Scholar] [CrossRef]
- Chimenti, D. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Piwakowski, B.; Drelich, R. Noncontact Ultrasonics Nondestructive Techniques: State of the Art and Their Use in Civil Engineering. J. Infrastruct. Syst. 2017, 23. [Google Scholar] [CrossRef]
- Castaings, M.; Cawley, P.; Farlow, R.; Hayward, G. Single Sided Inspection of Composite Materials Using Air Coupled Ultrasound. J. Nondestruct. Eval. 1998, 17, 37–45. [Google Scholar] [CrossRef]
- Baldwin, K.; Berndt, T.; Ehrlich, M. Narrowband laser generation/air-coupled detection: Ultrasonic system for on-line process control of composites. Ultrasonics 1999, 37, 329–334. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- McKeon, P.; Yaacoubi, S.; Declercq, N.; Ramadan, S.; Yaacoubi, W. Baseline subtraction technique in the frequency–wavenumber domain for high sensitivity damage detection. Ultrasonics 2014, 54, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Maio, L.; Ricci, F.; Memmolo, V.; Monaco, E.; Boffa, N. Application of laser Doppler vibrometry for ultrasonic velocity assessment in a composite panel with defect. Compos. Struct. 2018, 184, 1030–1039. [Google Scholar] [CrossRef]
- Harb, M.; Yuan, F.-G. Damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 2016, 15, 193–203. [Google Scholar] [CrossRef]
- Flynn, E.; Chong, S.; Jarmer, G.; Lee, J.-R. Structural imaging through local wavenumber estimation of guided waves. NDT E Int. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. The interaction of Lamb waves with defects. IEEE Trans. Ultrason. Ferrelectr. Freq. Control 1992, 39, 381–397. [Google Scholar] [CrossRef]
- Michaels, T.; Michaels, J.; Ruzzene, M. Frequency-wavenumber domain analysis of guided wavefields. Ultrasonics 2011, 51, 452–466. [Google Scholar] [CrossRef]
- Fei, D.; Chimenti, D. Rapid dispersion curve mapping and material property estimation in plates. AIP Conf. Proc. 2001, 557, 1368. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawashima, K. Mode extraction from multi-modes of Lamb wave. AIP Conf. Proc. 2002, 615, 219. [Google Scholar] [CrossRef]
- Testoni, N.; Marchi, L.D.; Marzani, A. Detection and characterization of delaminations in composite plates via air-coupled probes and warped-domain filtering. Compos. Struct. 2016, 153, 773–781. [Google Scholar] [CrossRef]
- Zhu, J.; Popovics, J. Non-contact imaging for surface-opening cracks in concrete with air-coupled sensors. Mater. Struct. 2005, 38, 801–806. [Google Scholar] [CrossRef]
- Pierce, A. Acoustics; Acoustical Society of America: Woodbury, NY, USA, 1989; ISBN 0-88318-618-8. [Google Scholar]
- Fedorov, F. Theory of Elastic Waves in Crystals; Springer Science and Business Media: New York, NY, USA, 1968; ISBN 978-1-4757-1277-3. [Google Scholar]
- Henneke, E. Reflection-Refraction of a Stress Wave at a Plane Boundary between Anisotropic Media. J. Acoust. Soc. Am. 1972, 51, 210–217. [Google Scholar] [CrossRef]
- Hakoda, C.; Lissenden, C. Using the Partial Wave Method for Wave-Structure Calculation and the Conceptual Interpretation of Elastodynamic Guided Waves. Appl. Sci. 2018, 8, 966. [Google Scholar] [CrossRef]
- Solie, L.; Auld, B. Elastic waves in free anisotropic plates. J. Acoust. Soc. Am. 1973, 54, 50–65. [Google Scholar] [CrossRef]
- Piezo, F. Sensors; Measurement Specialists Inc.: Norristown, PA, USA, 1999. [Google Scholar]
- Castaings, M.; Cawley, P. Single Sided The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J. Acoust. Soc. Am. 1996, 100, 3070–3077. [Google Scholar] [CrossRef]
Scaled Peak Values for Comparison | % Difference | |||
---|---|---|---|---|
PVDF | 1.8613 | N/A | 1.8613 | |
air-coupled | 0.4067 | 5.0556 | 2.0561 | 10.0% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakoda, C.; Hasanian, M.; Lissenden, C.J. On the Use of Oblique Acoustic Leakage to Measure the Wavenumber Spectrum of Propagating Lamb Waves. Sensors 2019, 19, 1391. https://doi.org/10.3390/s19061391
Hakoda C, Hasanian M, Lissenden CJ. On the Use of Oblique Acoustic Leakage to Measure the Wavenumber Spectrum of Propagating Lamb Waves. Sensors. 2019; 19(6):1391. https://doi.org/10.3390/s19061391
Chicago/Turabian StyleHakoda, Christopher, Mostafa Hasanian, and Cliff J. Lissenden. 2019. "On the Use of Oblique Acoustic Leakage to Measure the Wavenumber Spectrum of Propagating Lamb Waves" Sensors 19, no. 6: 1391. https://doi.org/10.3390/s19061391
APA StyleHakoda, C., Hasanian, M., & Lissenden, C. J. (2019). On the Use of Oblique Acoustic Leakage to Measure the Wavenumber Spectrum of Propagating Lamb Waves. Sensors, 19(6), 1391. https://doi.org/10.3390/s19061391