Next Article in Journal
Noise Suppression for Direction of Arrival Estimation in Co-located MIMO Sonar
Next Article in Special Issue
The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability
Previous Article in Journal
A Novel Multiband Spectrum Sensing Method Based on Wavelets and the Higuchi Fractal Dimension
Previous Article in Special Issue
Parallel Mechanism of Spectral Feature-Enhanced Maps in EEG-Based Cognitive Workload Classification
Article Menu
Issue 6 (March-2) cover image

Export Article

Open AccessArticle

Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions

1
ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse, France
2
Department of Psychology, University of Oldenburg, 26122 Oldenburg, Germany
3
Inria Bordeaux Sud Ouest, LaBRI, University of Bordeaux, Potioc Team, 33400 Talence, France
*
Author to whom correspondence should be addressed.
Sensors 2019, 19(6), 1324; https://doi.org/10.3390/s19061324
Received: 12 January 2019 / Revised: 24 February 2019 / Accepted: 12 March 2019 / Published: 16 March 2019
(This article belongs to the Special Issue EEG Electrodes)
  |  
PDF [12469 KB, uploaded 18 March 2019]
  |     |  

Abstract

Recent technological progress has allowed the development of low-cost and highly portable brain sensors such as pre-amplified dry-electrodes to measure cognitive activity out of the laboratory. This technology opens promising perspectives to monitor the “brain at work” in complex real-life situations such as while operating aircraft. However, there is a need to benchmark these sensors in real operational conditions. We therefore designed a scenario in which twenty-two pilots equipped with a six-dry-electrode EEG system had to perform one low load and one high load traffic pattern along with a passive auditory oddball. In the low load condition, the participants were monitoring the flight handled by a flight instructor, whereas they were flying the aircraft in the high load condition. At the group level, statistical analyses disclosed higher P300 amplitude for the auditory target (Pz, P4 and Oz electrodes) along with higher alpha band power (Pz electrode), and higher theta band power (Oz electrode) in the low load condition as compared to the high load one. Single trial classification accuracy using both event-related potentials and event-related frequency features at the same time did not exceed chance level to discriminate the two load conditions. However, when considering only the frequency features computed over the continuous signal, classification accuracy reached around 70% on average. This study demonstrates the potential of dry-EEG to monitor cognition in a highly ecological and noisy environment, but also reveals that hardware improvement is still needed before it can be used for everyday flight operations. View Full-Text
Keywords: dry-electrode EEG; real flight conditions; Artifact Subspace Reconstruction (ASR); oddball; auditory attention; neuroergonomics; mobi dry-electrode EEG; real flight conditions; Artifact Subspace Reconstruction (ASR); oddball; auditory attention; neuroergonomics; mobi
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions. Sensors 2019, 19, 1324.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top