Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Phenology Cameras
2.4. Phenocam Acquistion, Filtering & Processing
2.5. Landsat Data Processing
2.6. Spatial Averaging of Regions of Interest
2.7. Phenology Analysis
3. Results
3.1. Climate
3.2. Pinyon and Juniper Community
3.3. Sagebrush Communities
3.4. Meadow Communities
3.5. Comparison of Phenophase Dates
3.6. Seasonal Amplitude
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Gitelson, A.A.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Wardlow, B.D.; Suyker, A.E.; Verma, S.B.; Shibayama, M. An alternative method using digital cameras for continuous monitoring of crop status. Agric. For. Meteorol. 2012, 154, 113–126. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Dworak, V.; Selbeck, J.; Dammer, K.-H.; Hoffmann, M.; Zarezadeh, A.A.; Bobda, C. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems. Sensors 2013, 13, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Migliavacca, M.; di Cella, U.M.; Petey, M.; Siniscalco, C. Five years of phenological monitoring in a mountain grassland: Inter-annual patterns and evaluation of the sampling protocol. Int. J. Biometeorol. 2015, 59, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.B.; Hultine, K.R.; Steltzer, H.; Denny, E.G.; Denslow, M.W.; Granados, J.; Henderson, S.; Moore, D.; Nagai, S.; SanClements, M.; et al. Using phenocams to monitor our changing Earth: Toward a global phenocam network. Front. Ecol. Environ. 2016, 14, 84–93. [Google Scholar] [CrossRef]
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X. Emerging opportunities and challenges in phenology: A review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Tang, G.; Arnone, J.A.; Verburg, P.S.J.; Jasoni, R.L.; Sun, L. Trends and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011. Biogeosciences 2015, 12, 6985–6997. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.; Leite, P.T.P.; et al. Linking plant phenology to conservation biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data 2018, 5, 180028. [Google Scholar] [CrossRef] [PubMed]
- Phenocam Network. Available online: https://phenocam.sr.unh.edu/webcam/ (accessed on 24 September 2018).
- Hufkens, K.; Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar] [CrossRef]
- Toomey, M.; Friedl, M.A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Sonnentag, O.; Baldocchi, D.D.; Bernacchi, C.J.; Biraud, S.C.; Bohrer, G.; et al. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol. Appl. 2015, 25, 99–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melaas, E.K.; Friedl, M.A.; Richardson, A.D. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Glob. Chang. Biol. 2016, 22, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Kurc, S.; Benton, L. Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland. J. Arid Environ. 2010, 74, 585–594. [Google Scholar] [CrossRef]
- Snyder, K.A.; Wehan, B.L.; Filippa, G.; Huntington, J.L.; Stringham, T.K.; Snyder, D.K. Extracting Plant Phenology Metrics in a Great Basin Watershed: Methods and Considerations for Quantifying Phenophases in a Cold Desert. Sensors 2016, 16, 1948. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.M.; Karl, J.W.; Morin, D.; Richardson, A.D.; Tweedie, C.E. Phenocams bridge the gap between field and satellite observations in an arid grassland ecosystem. Remote Sens. 2017, 9, 1071. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; El-Madany, T.; Filippa, G.; Ma, X.; Ahrens, B.; Carrara, A.; Gonzalez-Cascon, R.; Cremonese, E.; Galvagno, M.; Hammer, T. Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sens. 2018, 10, 1293. [Google Scholar] [CrossRef]
- Tucker, C.; Sellers, P. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Mustard, J.F. Comparison of phenology trends by land cover class: A case study in the Great Basin, USA. Glob. Chang. Biol. 2008, 14, 334–346. [Google Scholar] [CrossRef]
- Baghzouz, M.; Devitt, D.A.; Fenstermaker, L.F.; Young, M.H. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sens. 2010, 2, 990–1013. [Google Scholar] [CrossRef]
- Huntington, J.; McGwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens. Environ. 2016, 185, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Sonnentag, O.; Humphreys, E.; Hufkens, K.; Ryu, Y.; Verfaillie, J.; di Cella, U.M. NDVI derived from near-infrared-enabled digital cameras: Applicability across different plant functional types. Agric. For. Meteorol. 2018, 249, 275–285. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Pearlstein, S.; Glenn, E.P.; Brown, T.B.; Bateman, H.L.; Bean, D.W.; Hultine, K.R. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations. Remote Sens. Environ. 2014, 140, 206–219. [Google Scholar] [CrossRef]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agric. For. Meteorol. 2017, 237, 311–325. [Google Scholar] [CrossRef]
- Norman, S.P.; Hargrove, W.W.; Christie, W.M. Spring and autumn phenological variability across environmental gradients of Great Smoky Mountains National Park, USA. Remote Sens. 2017, 9, 407. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agric. For. Meteorol. 2018, 256, 137–149. [Google Scholar] [CrossRef]
- Petach, A.R.; Toomey, M.; Aubrecht, D.M.; Richardson, A.D. Monitoring vegetation phenology using an infrared-enabled security camera. Agric. For. Meteorol. 2014, 195, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Forkel, M.; Wingate, L.; Tomelleri, E.; Di Cella, U.M.; Richardson, A.D. Phenopix: AR package for image-based vegetation phenology. Agric. For. Meteorol. 2016, 220, 141–150. [Google Scholar] [CrossRef]
- Chambers, J.C.; Miller, J.R. Great Basin Riparian Ecosystems: Ecology, Management, and Restoration; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Patten, D.T.; Rouse, L.; Stromberg, J.C. Isolated spring wetlands in the Great Basin and Mojave Deserts, USA: Potential response of vegetation to groundwater withdrawal. Environ. Manag. 2008, 41, 398–413. [Google Scholar] [CrossRef] [PubMed]
- PhenoCam Software Tools. Available online: https://phenocam.sr.unh.edu (accessed on 05 May 2018).
- Carroll, R.W.; Huntington, J.L.; Snyder, K.A.; Niswonger, R.G.; Morton, C.; Stringham, T.K. Evaluating mountain meadow groundwater response to Pinyon-Juniper and temperature in a great basin watershed. Ecohydrology 2017, 10, e1792. [Google Scholar] [CrossRef]
- Herrick, J.E.; Van Zee, J.W.; Havstad, K.M.; Burkett, L.M.; Whitford, W.G. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. Volume I: Quick Start. Volume II: Design, Supplementary Methods and Interpretation; USDA ARS Jornada Experimental Range: Las Cruces, NM, USA, 2005.
- Miller, R.F.; Shultz, L.M. Development and longevity of ephemeral and perennial leaves on Artemisia tridentata Nutt. ssp. wyomingensis. Great Basin Nat. 1987, 47, 227–230. [Google Scholar]
- Stevens, M.; Hoag, C.; Tilley, D.; St. John, L. Plant Guide for Mountain Rush (Juncus articus ssp. littoralis); USDA-Natural Resources Conservation Service, Aberdeen Plant Materials Center: Aberdeen, ID, USA, 2012.
- Calflora. Information on California Plants for Education, Research and Conservation. Available online: www.calflora.org (accessed on 9 September 2018).
- NRCS. NRCS National Water and Climate Center SNOTEL Data & Products. Available online: http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2170 (accessed on 20 September 2016).
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
- USGS. Landsat 8 Surface Relfectance Code (LaSRC) Product, 4.3 ed.; 2018. Available online: https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide (accessed on 05 March 2018).
- USGS. Landsat Surface Reflectance Level-2 Science Products; 2018. Available online: https://www.usgs.gov/land-resources/nli/landsat (accessed on 05 March 2018).
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Wingate, L.; Ogée, J.; Cremonese, E.; Filippa, G.; Mizunuma, T.; Migliavacca, M.; Moisy, C.; Wilkinson, M.; Moreaux, C.; Wohlfahrt, G. Interpreting canopy development and physiology using the EUROPhen camera network at flux sites. Biogeosci. Discuss. 2015, 12, 7979–8034. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Richardson, A.D.; Radeloff, V.C. Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 72–83. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Lauenroth, W.K.; Bradford, J.B. Consequences of declining snow accumulation for water balance of mid-latitude dry regions. Glob. Chang. Biol. 2012, 18, 1988–1997. [Google Scholar] [CrossRef]
- Palmquist, K.A.; Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K. Spatial and ecological variation in dryland ecohydrological responses to climate change: Implications for management. Ecosphere 2016, 7, e01590. [Google Scholar] [CrossRef]
- Connelly, J.W.; Schroeder, M.A.; Sands, A.R.; Braun, C.E. Guidelines to manage sage grouse populations and their habitats. Wildl. Soc. Bull. 2000, 28, 967–985. [Google Scholar] [CrossRef]
- Connelly, J.W.; Knick, S.T.; Schroeder, M.A.; Stiver, S.J. Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats; Western Association of Fish and Wildlife Agencies: Cheyenne, WY, USA, 2004; p. 73. [Google Scholar]
Camera Site | Height (m) | Angle (°) | Azimuth (°) | Aspect |
---|---|---|---|---|
1. Pinyon and juniper Woodland & Valley Sagebrush | 1.85 | 0.6 | 294 | WNW |
2. Upland Sagebrush | 2.18 | 8.2 | 250 | WSW |
3. Meadow | 2.28 | −0.9 | 205 | SSW |
Year | Pinyon & Juniper Woodland | Pinyon & Juniper Interspace | Upland Sagebrush | Valley Sagebrush | Dry Meadow | Mesic Meadow | Wet Meadow |
---|---|---|---|---|---|---|---|
2015 | 0.44 | 0.39 | 0.18 | 0.07 | 0.12 | 0.15 | 0.11 |
2016 | 0.43 | 0.24 | 0.13 | 0.10 | 0.07 | 0.14 | 0.10 |
2017 | 0.41 | 0.18 | 0.17 | 0.10 | 0.15 | 0.13 | 0.11 |
All Years | 0.42 | 0.26 | 0.16 | 0.09 | 0.12 | 0.14 | 0.11 |
Year | Pinyon & Juniper Woodland | Pinyon & Juniper Interspace | Upland Sagebrush | Valley Sagebrush | Dry Meadow | Mesic Meadow | Wet Meadow |
---|---|---|---|---|---|---|---|
2015 | −0.53 | 0.22 | 0.84 | 0.84 | 0.78 | 0.76 | 0.92 |
2016 | −0.40 | 0.34 | 0.88 | 0.93 | 0.98 | 0.87 | 0.93 |
2017 | −0.25 | 0.44 | 0.87 | 0.90 | 0.90 | 0.93 | 0.98 |
All Years | −0.24 | 0.22 | 0.86 | 0.92 | 0.93 | 0.84 | 0.96 |
Site & Years | Landsat Min | Landsat Max | Landsat Amplitude | Phenocam Min | Phenocam Max | Phenocam Amplitude |
---|---|---|---|---|---|---|
Pinyon & Juniper Woodland 2015 2016 2017 | ||||||
0.30 | 0.41 | 0.11 | −0.14 | −0.08 | 0.06 | |
0.32 | 0.42 | 0.10 | −0.16 | −0.06 | 0.10 | |
0.32 | 0.39 | 0.07 | −0.12 | −0.06 | 0.06 | |
Upland Sagebrush 2015 2016 2017 | ||||||
0.22 | 0.35 | 0.13 | −0.34 | −0.24 | 0.10 | |
0.19 | 0.48 | 0.29 | −0.33 | −0.12 | 0.21 | |
0.13 | 0.42 | 0.28 | −0.34 | −0.21 | 0.13 | |
Valley Sagebrush 2015 2016 2017 | ||||||
0.21 | 0.30 | 0.09 | −0.37 | −0.24 | 0.13 | |
0.18 | 0.40 | 0.21 | −0.41 | −0.12 | 0.30 | |
0.26 | 0.36 | 0.11 | −0.38 | −0.19 | 0.19 | |
Dry Meadow 2015 2016 2017 | ||||||
0.21 | 0.31 | 0.10 | −0.36 | −0.19 | 0.17 | |
0.15 | 0.41 | 0.26 | −0.38 | −0.07 | 0.31 | |
0.17 | 0.38 | 0.21 | −0.35 | −0.08 | 0.27 | |
Mesic Meadow 2015 2016 2017 | ||||||
0.23 | 0.39 | 0.16 | −0.30 | 0.00 | 0.30 | |
0.16 | 0.49 | 0.33 | −0.32 | 0.17 | 0.49 | |
0.18 | 0.55 | 0.37 | −0.39 | 0.15 | 0.55 | |
Wet Meadow 2015 2016 2017 | ||||||
0.19 | 0.52 | 0.34 | −0.24 | 0.09 | 0.33 | |
0.19 | 0.62 | 0.43 | −0.36 | 0.22 | 0.58 | |
0.18 | 0.76 | 0.58 | −0.33 | 0.32 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snyder, K.A.; Huntington, J.L.; Wehan, B.L.; Morton, C.G.; Stringham, T.K. Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin. Sensors 2019, 19, 1139. https://doi.org/10.3390/s19051139
Snyder KA, Huntington JL, Wehan BL, Morton CG, Stringham TK. Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin. Sensors. 2019; 19(5):1139. https://doi.org/10.3390/s19051139
Chicago/Turabian StyleSnyder, Keirith A., Justin L. Huntington, Bryce L. Wehan, Charles G. Morton, and Tamzen K. Stringham. 2019. "Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin" Sensors 19, no. 5: 1139. https://doi.org/10.3390/s19051139
APA StyleSnyder, K. A., Huntington, J. L., Wehan, B. L., Morton, C. G., & Stringham, T. K. (2019). Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin. Sensors, 19(5), 1139. https://doi.org/10.3390/s19051139