Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection
Abstract
1. Introduction
2. Sensor Concept
3. Design Optimization by FEM
4. Tests and Measurement Results
5. Particle Collection and Separation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zalk, D.M.; Paik, S.Y. Risk Assessment Using Control Banding. In Assenssing Nanoparticle Risks to Human Health, 2nd ed.; Ramachandran, G., Ed.; William Andrew: Oxford, UK, 2016; pp. 121–152. [Google Scholar]
- Soysal, U.; Géhin, E.; Algré, E.; Berthelot, B.; Da, G.; Robine, E. Aerosol mass concentration measurements: Recent advancements of real-time nano/micro systems. J. Aerosol Sci. 2017, 114, 42–54. [Google Scholar] [CrossRef]
- World Health Statistics 2016: Monitoring Health for the SDGs. Available online: https://www.who.int/gho/publications/world_health_statistics/2016/en/ (accessed on 10 December 2018).
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Ekinci, K.L.; Yang, Y.T.; Roukes, M.L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 2004, 95, 2682–2689. [Google Scholar] [CrossRef]
- Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 2004, 84, 4469–4471. [Google Scholar] [CrossRef]
- Kouh, T.; Basarir, O.; Ekinci, K.L. Room-temperature operation of a nanoelectromechanical resonator embedded in a phase-locked loop. Appl. Phys. Lett. 2005, 87, 113112. [Google Scholar] [CrossRef]
- Schmid, S.; Kurek, M.; Adolphsen, J.Q.; Boisen, A. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Sci. Rep. 2013, 3, 1288. [Google Scholar] [CrossRef]
- Chu, C.C.; Dey, S.; Liu, T.Y.; Chen, C.C.; Li, S.S. Thermal-Piezoresistive SOI-MEMS Oscillators Based on a Fully Differential Mechanically Coupled Resonator Array for Mass Sensing Applications. J. Microelectromech. Syst. 2018, 27, 59–72. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Sung, C.-A.; Weng, C.-H.; Chu, C.-C.; Zope, A.A.; Pillai, G.; Li, S.-S. Gated CMOS-MEMS thermal-piezoresisitve oscillator-based PM2.5 sensor with enhanced particle collection efficiency. In Proceedings of the MEMS 2018, Belfast, Northern Ireland, UK, 21–25 January 2018; pp. 75–78. [Google Scholar]
- Jafari, H.; Ghodsi, A.; Ghazavi, M.R.; Azizi, S. Novel mass detection based on magnetic excitation in anti-resonance region. Microsyst. Technol. 2017, 23, 1377–1383. [Google Scholar] [CrossRef]
- Bao, Y.; Cai, S.; Yu, H.; Xu, T.; Xu, P.; Li, X. A resonant cantilever based particle sensor with particle-size selection function. J. Micromech. Microeng. 2018, 28, 085019. [Google Scholar] [CrossRef]
- Bertke, M.; Wu, W.; Wasisto, H.S.; Uhde, E.; Peiner, E. Size-selective electrostatic sampling and removal of nanoparticles on silicon cantilever sensors for air-quality monitoring. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1493–1496. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Merzsch, S.; Uhde, E.; Waag, A.; Peiner, E. Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever. Microelectron. Eng. 2015, 145, 96–103. [Google Scholar] [CrossRef]
- Prokaryn, P.; Janus, P.; Zajac, J.; Sierakowski, A.; Domanski, K.; Grabiec, P. Gravimetric measurements with use of a cantilever for controlling of electrochemical deposition processes. In Proceedings of the 14th International Conference on Optical and Electronic Sensors, Gdansk, Poland, 10 November 2016; p. 1016107. [Google Scholar]
- Xu, J.; Bertke, M.; Lia, X.; Mu, H.; Zhou, H.; Yu, F.; Hamdana, G.; Schmidt, A.; Bremers, H.; Peiner, E. Fabrication of ZnO nanorods and Chitosan@ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing. Sens. Actuator B. Chem. 2018, 273, 276–287. [Google Scholar] [CrossRef]
- Xu, P.; Xu, T.; Yu, H.; Li, X. Resonant-Gravimetric Identification of Competitive Adsorption of Environmental Molecules. Anal. Chem. 2017, 89, 7031–7037. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Guo, S.; Xu, P.; Yu, H.; Xu, T.; Zhang, S.; Li, X. Revealing humidity-enhanced NH3 sensing effect by using resonant microcantilever. Sens. Actuators B Chem. 2018, 257, 488–495. [Google Scholar] [CrossRef]
- Łabędź, B.; Wańczyk, A.; Rajfur, Z. Precise mass determination of single cell with cantilever-based microbiosensor system. PLoS ONE 2017, 12, e0188388. [Google Scholar] [CrossRef] [PubMed]
- Cooper, O.; Wang, B.; Brown, C.L.; Tiralongo, J.; Iacopi, F. Toward Label-Free Biosensing With Silicon Carbide: A Review. IEEE Access 2016, 4, 477–497. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens. Actuators B Chem. 2013, 189, 146–156. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett. 2013, 8, 554–558. [Google Scholar] [CrossRef]
- Maldonado-Garcia, M.; Kumar, V.; Wilson, J.C.; Pourkamali, S. Chip-Scale Implementation and Cascade Assembly of Particulate Matter Collectors with Embedded Resonant Mass Balances. IEEE Sens. J. 2017, 17, 1617–1625. [Google Scholar] [CrossRef]
- Bertke, M.; Hamdana, G.; Wu, W.; Wasisto, H.S.; Uhde, E.; Peiner, E. Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection. J. Micromech. Microeng. 2017, 27, 064001. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Zhang, Q.; Merzsch, S.; Waag, A.; Peiner, E. A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsyst. Technol. 2014, 20, 559–569. [Google Scholar] [CrossRef]
- Setiono, A.; Xu, J.; Fahrbach, M.; Bertke, M.; Ombati Nyang’au, W.; Wasisto, H.S.; Peiner, E. Real-Time Frequency Tracking of an Electro-Thermal Piezoresistive Cantilever Resonator with ZnO Nanorods for Chemical Sensing. Chemosensors 2019, 7, 2. [Google Scholar] [CrossRef]
- Setiono, A.; Fahrbach, M.; Xu, J.; Bertke, M.; Ombati Nyang’au, W.; Hamdana, G.; Wasisto, H.S.; Peiner, E. Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors. J. Sens. Sens. Syst. 2019, 8, 1–12. [Google Scholar] [CrossRef]
Symbol | Material Property | Silicon |
---|---|---|
E | Youngs modulus (GPa) | 170 |
χ | Poissons ratio | 0.28 |
ρ | Density (kg/m3) | 2330 |
D | Elasticity matrix (GPa) |
Parameter | Value 1 | Value 2 |
---|---|---|
Strut/cantilever width wS and wC | 3 µm | 6 µm |
Cantilever length lC | 122.5 µm | 173.2 µm |
Strut length lS | 25 µm | 35 µm |
Strut/cantilever thickness t | 2–8 µm | 2–8 µm |
Strut position pS (from clamped end) | 25 µm | 35 µm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertke, M.; Xu, J.; Fahrbach, M.; Setiono, A.; Wasisto, H.S.; Peiner, E. Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection. Sensors 2019, 19, 901. https://doi.org/10.3390/s19040901
Bertke M, Xu J, Fahrbach M, Setiono A, Wasisto HS, Peiner E. Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection. Sensors. 2019; 19(4):901. https://doi.org/10.3390/s19040901
Chicago/Turabian StyleBertke, Maik, Jiushuai Xu, Michael Fahrbach, Andi Setiono, Hutomo Suryo Wasisto, and Erwin Peiner. 2019. "Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection" Sensors 19, no. 4: 901. https://doi.org/10.3390/s19040901
APA StyleBertke, M., Xu, J., Fahrbach, M., Setiono, A., Wasisto, H. S., & Peiner, E. (2019). Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection. Sensors, 19(4), 901. https://doi.org/10.3390/s19040901