An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data
Abstract
1. Introduction
2. Methodology
3. Experiments
3.1. Simulated Data
3.2. In Situ Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Gillespie, A.; Cothem, J.; Alley, R.; Kahle, A. In-Scene Atmospheric Characterization and Compensation in Hyperspectral Thermal Infrared Images. In Proceedings of the 7th Jet Propulsion Laboratory Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998. [Google Scholar]
- Horton, K.A.; Johnson, J.R.; Lucey, P.G. Infrared Measurements of Pristine and Disturbed Soils 2. Environmental Effects and Field Data Reduction. Remote Sens. Environ. 1998, 64, 47–52. [Google Scholar] [CrossRef]
- Balick, L.; Gillespie, A.; French, A.; Danilina, I.; Allard, J.P.; Mushkin, A. Longwave thermal infrared spectral variability in individual rocks. IEEE Geosci. Remote Sens. Lett. 2009, 6, 52–56. [Google Scholar] [CrossRef]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Beaudoin, G.; Huot, F.; Maldague, X.P.; Chamberland, M.; Lalonde, E. Emissivity Retrieval from Indoor Hyperspectral Imaging of Mineral Grains. In Proceedings of the International Society for Optics and Photonics 2016 (SPIE 2016), Baltimore, MD, USA, 11 May 2016. [Google Scholar]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G.; Chamberland, M. Continuum removal for ground based LWIR hyperspectral infrared imagery applying non-negative matrix factorization. Appl. Opt. 2018, 57, 6219–6228. [Google Scholar] [CrossRef]
- Bernard, E.H.; Donald, M.H.; Federico, S.; John, C.M. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods. Aeolian Res. 2018, 30, 54–96. [Google Scholar]
- Aires, F.; Chédin, A.; Scott, N.A.; Rossow, W.B. A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument. J. Appl. Meteorol. 2002, 41, 144–159. [Google Scholar] [CrossRef]
- Blackwell, W.J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2535–2546. [Google Scholar] [CrossRef]
- Paul, M.; Aires, F.; Prigent, C.; Trigo, I.F.; Bernardo, F. An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI. J. Geophys. Res. 2012, 117, D11302. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Weisz, E.; Zhou, D.K. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophys. Res. Lett. 2007, 34, 4–9. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances. Appl. Opt. 2013, 52, 2428–2446. [Google Scholar] [CrossRef]
- Pivovarník, M.; Khalsa, S.J.S.; Jiménez-Muñoz, J.C.; Zemek, F. Improved temperature and emissivity separation algorithm for multispectral and hyperspectral sensors. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1944–1953. [Google Scholar] [CrossRef]
- Zhong, X.K.; Labed, J.; Zhou, G.; Shao, K.; Li, Z.L. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images. Sensors 2015, 15, 13406–13423. [Google Scholar] [CrossRef]
- Borel, C.C. Surface Emissivity and Temperature Retrieval for a Hyperspectral Sensor. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 1998 (IGARSS 1998), Seattle, DC, USA, 6–10 July 1998. [Google Scholar]
- Borel, C. Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data. Int. J. Remote Sens. 2008, 29, 5029–5045. [Google Scholar] [CrossRef]
- Ingram, P.M.; Muse, A.H. Sensitivity of iterative spectrally smooth temperature/emissivity separation to algorithmic assumptions and measurement noise. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2158–2167. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Q.H.; Li, X.W.; Xiao, Q.; Liu, Q.; Du, Y.M. Correlation-based temperature and emissivity separation algorithm. Sci. China Ser. D Earth Sci. 2008, 51, 357–369. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, X.; Tang, B.; Li, Z.L.; Zhang, R. A New Method for Temperature/Emissivity Separation from Hyperspectral Thermal Infrared Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2008 (IGARSS 2008), Boston, MA, USA, 6–11 July 2008. [Google Scholar]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Wang, N.; Wu, H.; Nerry, F.; Li, C.R.; Li, Z.L. Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1291–1303. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wu, H.; Jiang, X.G.; Jiang, Y.Z.; Liu, Z.X.; Nerry, F. Land Surface Temperature and Emissivity Retrieval from Field-Measured Hyperspectral Thermal Infrared Data Using Wavelet Transform. Remote Sens. 2017, 9, 454. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Isabel, F.T.; José, A.S. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- ECOSTRESS Spectral Library—Version 1.0. Available online: http://speclib.jpl.nasa.gov/ (accessed on 8 October 2019).
- Widmann, A.; Schröger, E.; Maess, B. Digital filter design for electrophysiological data—A practical approach. J. Neurosci. Methods 2015, 250, 34–46. [Google Scholar] [CrossRef]
- Pearson, R.K. Outliers in process modeling and identification. IEEE Tran. Control Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Scott, N.A.; Chedin, A. A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. 1981, 20, 802–812. [Google Scholar] [CrossRef]
- Chedin, A.; Scott, N.A.; Claud, C.; Bonnet, B.; Escobar, J.; Dardaillon, S.; Cheruy, F.; Husson, N. Global scale observation of the Earth for climate studies. Adv. Space Res. 1994, 14, 155–159. [Google Scholar] [CrossRef]
- Kanani, K. Utilisation de la très Haute Résolution Spectrale Pour la Mesure en Environnement Extérieur de L’émissivité de Surface dans la Bande Infrarouge 3–13 μm: Méthodes et Validation Expérimentale. Ph.D. Thesis, Université Louis Pasteur Strasbourg I, Strasbourg, France, 2005. [Google Scholar]
- Kanani, K.; Poutier, L.; Nerry, F.; Stoll, M. Directional effects consideration to improve out-doors emissivity retrieval in the 3–13 μm domain. Opt. Express 2007, 15, 12464–12482. [Google Scholar] [CrossRef]
LSEC Method | PES-LSEC Method | |||
---|---|---|---|---|
RMSEε | RMSET (T) | RMSEε | RMSET (T) | |
Red-orange sandy | 6.2 × 10−5 | 5.5 × 10−4 | 4.4 × 10−5 | 3.1 × 10−4 |
Sea water | 1.9 × 10−4 | 1.0 × 10−3 | 8.7 × 10−5 | 5.2 × 10−4 |
Green grass | 2.1 × 10−4 | 8.1 ×10−4 | 1.2 × 10−4 | 3.8 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Zhao, E.; Li, Z.-L.; Labed, J.; Nerry, F. An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors 2019, 19, 5552. https://doi.org/10.3390/s19245552
Lan X, Zhao E, Li Z-L, Labed J, Nerry F. An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors. 2019; 19(24):5552. https://doi.org/10.3390/s19245552
Chicago/Turabian StyleLan, Xinyu, Enyu Zhao, Zhao-Liang Li, Jélila Labed, and Françoise Nerry. 2019. "An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data" Sensors 19, no. 24: 5552. https://doi.org/10.3390/s19245552
APA StyleLan, X., Zhao, E., Li, Z.-L., Labed, J., & Nerry, F. (2019). An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors, 19(24), 5552. https://doi.org/10.3390/s19245552