Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing’s Main City
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Image Preprocessing and Land Cover Analysis
2.2.2. LST Retrieval
2.2.3. Analysis of Heat Island Grades and Calculation of Heat Island Coefficients
2.2.4. Center Migration and Correlation Analysis
3. Results and Discussion
3.1. Land Cover Changes
3.2. Changes in the Heat Island Effect
3.3. Impervious Surface and Heat Island Center Migration
3.4. Contribution of Different Land Cover Types to Heat Island Effect
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Cui, L.; Liu, C.; Chen, L.; Zhang, L. Spatialtemporal distribution of urban heat island effect based on MODIS data in Chongqing, China. Chin. J. Ecol. 2018, 37, 3736–3745. [Google Scholar]
- Jia, B.; Qiu, E.T. Dynamic Change of Urban Heat Island Effect in Xi’an Based on TM Images. Arid Zone Res. 2013, 30, 347–355. [Google Scholar]
- Morini, E.; Touchaei, A.G.; Rossi, F.; Cotana, F.; Akbari, H. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 2018, 24, 551–566. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K.; Lakes, T.; Qureshi, S. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-markov chain modelling: A case of Babol city, Iran. Ecol. Indic. 2018, 91, 155–170. [Google Scholar] [CrossRef]
- Astrom, D.O.; Astrom, C.; Rekker, K.; Indermitte, E.; Orru, H. High summer temperatures and mortality in Estonia. PLoS ONE 2016, 11, 155–162. [Google Scholar]
- Steeneveld, G.J.; Koopmans, B.G.; Heusinkveld, B.G.; Hove, W.A. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Johnson, H.; Kovats, R.S.; McGregor, G.; Stedman, J.; Gibbs, M.; Walton, H. The impact of the 2003 heat wave on daily mortality in England and Wales and the use of rapid weekly mortality estimates. Euro Surveill. 2005, 10, 168–171. [Google Scholar] [CrossRef]
- Poumadère, M.; Mays, C.; Le, M.S.; Blong, R. The 2003 heat wave in France: Dangerous climate change here and now. Risk Anal. 2005, 25, 1483–1494. [Google Scholar] [CrossRef]
- Wen, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. GISci. Remote 2019, 56, 576–604. [Google Scholar]
- Aktas, Y.D.; Stocker, J.; Curruthers, D.; Hunt, J. A sensitivity study relating to neighbourhood-scale fast local urban climate modelling within the built environment. Procedia Eng. 2017, 198, 589–599. [Google Scholar] [CrossRef]
- Chen, J.; Chu, R.; Wang, H.; Zhang, L.; Chen, X.; Du, Y. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. J. Clean. Prod. 2019, 237, 117722. [Google Scholar] [CrossRef]
- Zou, Z.; Zhan, W.; Liu, Z.; Bechtel, B.; Gao, L.; Hong, F.; Huang, F.; Lai, J. Enhanced modeling of annual temperature cycles with temporally discrete remotely sensed thermal observations. Remote Sens. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Abutaleb, K.; Ngie, A.; Darwish, A.; Ahmed, M.; Arafat, S.; Ahmed, F. Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt. Adv. Remote Sens. 2015, 4, 35–47. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A.N.V. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [Google Scholar] [CrossRef]
- Miky, Y.H. Remote sensing analysis for surface urban heat island detection over Jeddah, Saudi Arabia. Appl. Geomat. 2019, 11, 243. [Google Scholar] [CrossRef]
- Mijani, N.; Alavipanah, S.K.; Hamzeh, S.; Firozjaei, M.K.; Arsanjani, J.J.; Ahmed, F. Modeling thermal comfort in different condition of mind using satellite images: An Ordered Weighted Averaging approach and a case study. Ecol. Indic. 2019, 104, 1–12. [Google Scholar] [CrossRef]
- Ahmed, S. Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2018, 21, 15–25. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Qian, J. Research progress on the thermal environment of the urban surfaces. Acta Ecol. Sin. 2018, 38, 1134–1147. [Google Scholar]
- Song, B.; Park, K. Analysis of spatiotemporal urban temperature characteristics by urban spatial patterns in Changwon city, South Korea. Sustanbility 2019, 11, 3777. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, Y.; Tong, C. Quantitative analysis of urban cold island effects on the evolution of green spaces in a coastal city: A case study of Fuzhou, China. Environ. Monit. Assess. 2019, 191, 121. [Google Scholar] [CrossRef]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Carol, B.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Environ. 2018, 628, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Environ. 2018, 655, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, D.; Cao, S.; Chen, S.; Yu, C. Monitoring Urban Heat Island Intensity of Beijing-Tianjin-Hebei Urban Agglomeration on Remote Sensing and its Relationship with Urban Scale. J. Cap. Normal Univ. J. Nat. Sci. Ed. 2018, 39, 72–80. [Google Scholar]
- Lin, Z.; Xu, H.; Chen, H. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China’s eastern coastal region. Res. Environ. Sci. 2018, 31, 1695–1704. [Google Scholar]
- Liu, B.; Bao, G.; Peng, K.; Shi, M.; He, H. Comparison of different land surface temperature algorithms based on Landsat TM images. Geomatics World. 2015, 22, 57–61. [Google Scholar]
- Wang, F.; Niu, Z.; Xu, P. Seasonal variation of the surface thermal environment in Changshu City based on land-scape pattern. Chin. J. Ecol. 2016, 35, 3404–3412. [Google Scholar]
- Shao, S.; Xiao, L.; Liu, H. Relationship of Land Use and Urban Hot Island Explored by Remote Sensing Images. Geo. Info. 2018, 16, 86–91. [Google Scholar]
- Xu, H. Comparison on dynamic characteristics of urban heat island effects in medium—Sized cities in Chengdu plain. Geomat. Spat. Inf. Technol. 2015, 38, 13–19. [Google Scholar]
- Kuang, W.; Yang, T.; Liu, A.; Zhang, C.; Lu, D.; Chi, W. An EcoCity model for regulating urban land cover structure and thermal environment: Taking Beijing as an example. Sci. Chin. Earth Sci. 2017, 60, 1098–1109. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H. Modelling land use change and environmental impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. Geoj. 2004, 61, 309–324. [Google Scholar] [CrossRef]
- He, C.; Zhou, H.; Yu, Z.; Zhang, Q. Regional land use/cover information processing. Res. Sci. 2002, 24, 64–70. [Google Scholar]
- Li, Y.; Chen, H.; Li, J. Classifying remote sensing images based on micro-group genetic algorithm and adaptive back propagation algorithm. Opt. Technol. 2005, 31, 17–23. [Google Scholar]
- Gambarova, E.; Gambarov, A.; Ismayilov, J. Applying neural networks in rare vegetation communities classification of remotely sensed images. Oprical Mem. Neural Netw. 2008, 17, 157–166. [Google Scholar] [CrossRef]
- Stefano, S. Land use change analysis in the urban region of Milan. Manag. Environ. Qual. Int. J. 2017, 28, 879–901. [Google Scholar]
- Wang, X.; Bao, Y. Methods of land use change research. Prog. Geogr. Sci. 1999, 18, 81–87. [Google Scholar]
- Fang, L.; Zhou, L.; Pan, H. Study on the Relationship between Land Use/Cover Change and Its Thermal Environment Effect in the Main Urban Area of Chongqing. J. Sichuan Vocational Techn. Coll. 2018, 28, 149–155. [Google Scholar]
- He, Z.; Gao, Y.; Yang, S.; Shangguan, C. The Characteristics and Mitigating Measures of Urban Heat Island Effect of Chongqing. Plat. Mount. Met. Res. 2017, 37, 48–52. [Google Scholar]
- Li, J.; Gong, W.; Xin, X.; Gao, Y. Land surface temperature retrieval and its spatial heterogenity in summer in Chongqing. Remote Sens. Technol. Appl. 2018, 33, 820–829. [Google Scholar]
- Li, X.; Ceng, S. Comparisive research on characteristics of urban heat island effects between Chengdu and Chongqing. Meteorol. Sci. Technol. 2015, 43, 888–897. [Google Scholar]
- Zhang, Y.; Lui, X.; Zhu, H.; Li, Y. Analyzing the impacts of urbanization and seasonal variation on land surface temperature based on subpixel fractional covers using Landsat images. Appl. Earth Obs. Remote Sens. 2017, 10, 1344–1356. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Lui, X.; Zhu, H.; Li, Y. Features of urban heat island in mountainous Chongqing from a dense surface monitoring network. Atmosphere 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Yi, C.; Hu, J.; Li, X. Response analysis of land cover types on urban heat iIsland effect. Bull. Surv. Mapp. 2018, 1, 72–76. [Google Scholar]
- Wang, M.; Xu, Q. Analyzing the influence of urban forms on surface urban heat islands intensity in Chinese mega cities. J. Geo-Inf. Sci. 2018, 20, 1787–1798. [Google Scholar]
- Liang, H.; Meng, Q.; Ren, P.; Li, X. Analysis of seasonal variation of urban heat island effect in central Guangzhou based on remote sensing. Environ. Sci. Manag. 2018, 4, 167–173. [Google Scholar]
- Wang, Z.; Dong, B.; Chen, D. Surface Parameters Analysis of Shenyang Urban Heat Island Based on Landsat. Geomat. Spat. Inf. Technol. 2018, 41, 4–11. [Google Scholar]
- Tang, Y.; Gao, Y. The research of Chongqing’s high temperature classification index and its regularity. J. Southwest Agric. Univ. 2003, 25, 88–91. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G.; Donnell, E.M. Landsat TM and ETM+ Thermal Band Calibration. Can. J. Remote Sens. 2006, 28, 141–153. [Google Scholar]
- Qin, Z.; Li, W.; Xu, B.; Chen, Z.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Environ. Land Resour. 2004, 3, 28–35. [Google Scholar]
- Schott, J.R.; Volchok, W.J. Thematic Mapper thermal infrared calibration. Photogramm. Eng. Remote Sens. 1985, 51, 1351–1357. [Google Scholar]
- Wukelic, G.E.; Gibbons, D.E.; Martucci, L.M.; Martucci, L.M.; Foot, H.P. Radiometric calibration of Landsat Thermatic Mapper Thermal Band. Remote Sens. Environ. 1989, 28, 339–347. [Google Scholar] [CrossRef]
- Goetz, S.J.; Halthore, R.N.; Hall, F.G.; Markham, B.L. Surface temperature retrieval in a temperate grassland with multiresolution sensors. J. Geophys. Res. 1995, 100, 25397–25410. [Google Scholar] [CrossRef]
- Chen, S.; Wang, T. Comparison analyses of equal interval method and mean-standard deviation method used to delimitate urban heat island. J. Geophys. Inf. Sci. 2009, 11, 145–150. [Google Scholar] [CrossRef]
- Sun, D.; Wu, J.; Li, W.; Cao, G. Temporal and spatial patterns of droughts in recent 50 years of Chongqing city based on standardized precipitation index. Bull. Soil Water Conserv. 2016, 36, 197–203. [Google Scholar]
- Yan, J.; Lu, F.; Chen, M.; Yang, C.; Feng, Y. Characteristics, influential factors and countermeasures of drought disasters in Chongqing. Yangtze River 2018, 49, 1–5. [Google Scholar]
- Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xue, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- Yan, H.; Wang, X.; Hao, P.; Dong, L. Study on the micro climatic characteristics and human comfort of park plant communities in summer. Procedia Environ. Sci. 2012, 13, 755–765. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Krüger, E.; Pearlmutter, D.; Rasia, F. Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Appl. Energy 2010, 87, 2068–2078. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S. Urban form and density as indicators for summer time outdoor ventilation potential: A case study on high-rise housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealized urban canyons—Examples from Freiburg, Germany. Int. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.K. Sky view factor analysis-implications for urban air temperature differences. Meteorol. Appl. 2004, 11, 201–211. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Wu, F.; Zhang, N.; Dong, L. Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Build. Environ. 2014, 76, 44–53. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, L. Mitigating urban heat island effects in high-density cities based on sky view factor and urban morphological understanding: A study of Hong Kong. Arch. Sci. Rev. 2011, 54, 305–315. [Google Scholar] [CrossRef]
Satellite | Row | Path | Acquisition Date | Spatial Resolution (Multispectral/Thermal Infrared) | Cloud Cover (%) |
---|---|---|---|---|---|
Landsat 5 | 128 | 39 | 2001–07–17 | 30 m/120 m | 0.01 |
Landsat 5 | 128 | 39 | 2004–07–25 | 30 m/120 m | 0.49 |
Landsat 5 | 128 | 39 | 2009–08–24 | 30 m/120 m | 11.41 |
Landsat 8 | 128 | 39 | 2014–08–06 | 30 m/100 m | 2.92 |
Landsat 8 | 128 | 39 | 2018–09–02 | 30 m/100 m | 17.79 |
Name | Classification Standard | Weight |
---|---|---|
strong cold island zone | [0,u − 1.5 ∗ std) | 1 |
general cold island zone | [u − 1.5 ∗ std,u − 0.75 ∗ std) | 2 |
colder middle temperature zone | [u − 0.75 ∗ std,u) | 3 |
hotter middle temperature zone | [u,u + 0.75 ∗ std) | 4 |
general heat island zone | [u + 0.75 ∗ std,u + 1.5 ∗ std) | 5 |
strong heat island zone | [u + 1.5 ∗ std,1] | 6 |
Evaluation Indicators | 2001 | 2004 | 2009 | 2014 | 2018 |
---|---|---|---|---|---|
Kappa coefficient | 0.89 | 0.84 | 0.81 | 0.91 | 0.86 |
Overall accuracy | 0.94 | 0.93 | 0.91 | 0.95 | 0.92 |
District | Water | Vegetation | Impervious Surface | Mean of All Land Cover Types |
---|---|---|---|---|
Yuzhong | −1.65 | 1.09 | 1.67 | 0.37 |
Jiangbei | −2.05 | −0.01 | 1.92 | −0.05 |
Shapingba | −1.17 | −0.14 | 1.64 | 0.11 |
Nanan | −2.08 | −0.22 | 1.60 | −0.23 |
Beibei | −1.29 | −0.22 | 1.65 | 0.05 |
Yubei | −1.88 | −0.08 | 1.93 | −0.01 |
Mean of each land cover type | −1.95 | 0.04 | 1.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, Q.; Yu, W.; Ma, M.; Wen, J. Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing’s Main City. Sensors 2019, 19, 5239. https://doi.org/10.3390/s19235239
Lang Q, Yu W, Ma M, Wen J. Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing’s Main City. Sensors. 2019; 19(23):5239. https://doi.org/10.3390/s19235239
Chicago/Turabian StyleLang, Qin, Wenping Yu, Mingguo Ma, and Jianguang Wen. 2019. "Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing’s Main City" Sensors 19, no. 23: 5239. https://doi.org/10.3390/s19235239
APA StyleLang, Q., Yu, W., Ma, M., & Wen, J. (2019). Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing’s Main City. Sensors, 19(23), 5239. https://doi.org/10.3390/s19235239