Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodes
2.2. Participants
2.3. Visual Stimulation
2.4. Data Acquisition
2.5. Signal Processing
2.6. Statistical Analysis
2.6.1. Electrode Impedance
2.6.2. Frequency Analysis
2.6.3. VEP Analysis
3. Results
3.1. Electrode Impedance
3.2. Frequency Analysis
3.3. VEP Results
3.3.1. Summary Statistics of N75 and P100 Peak Times and Amplitudes
3.3.2. Effect of Electrode Type on N75 and P100 Peak Times and Amplitudes
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Creel, D.J. Visually Evoked Potentials. Available online: http://webvision.med.utah.edu/book/electrophysiology/visually-evoked-potentials/ (accessed on 1 September 2015).
- Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Scheer, H.J.; Sander, T.; Trahms, L. The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas. 2006, 27, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Huigen, E.; Peper, A.; Grimbergen, C.A. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 2002, 40, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Pinegger, A.; Wriessnegger, S.C.; Faller, J.; Müller-Putz, G.R. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain–Computer Interface: Case Studies. Front. Neurosci. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Ferree, T.C.; Luu, P.; Russell, G.S.; Tucker, D.M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536–544. [Google Scholar] [CrossRef]
- Zohuriaan-Mehr, M.J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Aregueta-Robles, U.A.; Woolley, A.J.; Poole-Warren, L.A.; Lovell, N.H.; Green, R.A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 2014, 7, 1–18. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef]
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Liu, X.; Ahmed, A.; Wang, Z.; Zhang, H. Nanofibrous microspheres via emulsion gelation and carbonization. Chem. Commun. 2015, 51, 16864–16867. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhang, X.; Si, T.; Zhang, Y.; Qi, L.; Zhao, G.; Xu, R.X.; He, X.; Zhao, Y. Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuous-Flow Microfluidics with Embedded Electrodes. Small 2017, 13, 1702821. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Bhowmick, R.; Prodhan, C.; Majumder, D.; Bhattacharya, S.K.; Ali, M. Synthesis and characterization of biopolymer based hybrid hydrogel nanocomposite and study of their electrochemical efficacy. Int. J. Biol. Macromol. 2019, 123, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Mac Kenna, N.; Calvert, P.; Morrin, A. Impedimetric transduction of swelling in pH-responsive hydrogels. Analyst 2015, 140, 3003–3011. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Mulle, M.; Aguilar Ventura, I.; Lubineau, G. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale 2015, 7, 14766–14773. [Google Scholar] [CrossRef] [PubMed]
- Shay, T.; Velev, O.D.; Dickey, M.D. Soft electrodes combining hydrogel and liquid metal. Soft Matter 2018, 14, 3296–3303. [Google Scholar] [CrossRef]
- Solomons, C.D.; Slovak, M.; Heller, B.; Barker, A.T. Reducing the sensation of electrical stimulation with dry electrodes by using an array of constant current sources. Med. Eng. Phys. 2018, 51, 91–95. [Google Scholar] [CrossRef]
- Zhao, J.; Sclabassi, R.J. Mingui Sun Biopotential electrodes based on hydrogel. In Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, Hoboken, NJ, USA, 2–3 April 2005; pp. 69–70. [Google Scholar]
- Alba, N.A.; Sclabassi, R.J.; Sun, M.; Cui, X.T. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 415–423. [Google Scholar] [CrossRef]
- Chen, Y.-H.; de Beeck, M.; Vanderheyden, L.; Carrette, E.; Mihajlović, V.; Vanstreels, K.; Grundlehner, B.; Gadeyne, S.; Boon, P.; Van Hoof, C. Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording. Sensors 2014, 14, 23758–23780. [Google Scholar] [CrossRef] [Green Version]
- El Ters, N.M.; Mathur, A.M.; Jain, S.; Vesoulis, Z.A.; Zempel, J.M. Long term electroencephalography in preterm neonates: Safety and quality of electrode types. Clin. Neurophysiol. 2018, 129, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.M.; Hayes, S.; Young, M.; Shah, D. Visual evoked potentials with CRT and LCD monitors: When newer is not better. Neurology 2009, 72, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- Strasser, T.; Peters, T.; Jagle, H.; Zrenner, E.; Wilke, R. An integrated domain specific language for post-processing and visualizing electrophysiological signals in Java. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 1, pp. 4687–4690. [Google Scholar]
- Strasser, T.; Wilke, R.; Messias, A.; Zrenner, E. Erg explorer: A software for post-processing, analysing, and reporting of electrophysiological data. Acta Ophthalmol. 2008, 86. [Google Scholar] [CrossRef]
- Wyckoff, S.N.; Sherlin, L.H.; Ford, N.L.; Dalke, D. Validation of a wireless dry electrode system for electroencephalography. J. Neuroeng. Rehabil. 2015, 12, 95. [Google Scholar] [CrossRef]
- Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Tormene, A.P. Vaegan ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 2010, 120, 111–119. [Google Scholar] [CrossRef]
- Bathke, A. The ANOVA F test can still be used in some balanced designs with unequal variances and nonnormal data. J. Stat. Plan. Inference 2004, 126, 413–422. [Google Scholar] [CrossRef]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Effect of variance ratio on ANOVA robustness: Might 1.5 be the limit? Behav. Res. Methods 2018, 50, 937–962. [Google Scholar] [CrossRef]
- Horkay, F.; Horkay, F.; Tasaki, I.; Tasaki, I.; Basser, P.J.; Basser, P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2000, 1, 84–90. [Google Scholar] [CrossRef]
- Brigell, M.; Bach, M.; Barber, C.; Moskowitz, A.; Robson, J. Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc. Ophthalmol. 2003, 107, 185–193. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Luck, S.J. The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology 2010, 47, 888–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, Y.; McArthur, G. Does combing the scalp reduce scalp electrode impedances? J. Neurosci. Methods 2010, 188, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Oken, B.S.; Chiappa, K.H.; Gill, E. Normal temporal variability of the P100. Electroencephalogr. Clin. Neurophysiol. 1987, 68, 153–156. [Google Scholar] [CrossRef]
- Tobimatsu, S.; Tomoda, H.; Kato, M. Normal variability of the amplitude and phase of steady-state VEPs. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials 1996, 100, 171–176. [Google Scholar] [CrossRef]
- Lauritzen, L.; Jørgensen, M.H.; Michaelsen, K.F. Test-Retest Reliability of Swept Visual Evoked Potential Measurements of Infant Visual Acuity and Contrast Sensitivity. Pediatr. Res. 2004, 55, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Sarnthein, J.; Andersson, M.; Zimmermann, M.B.; Zumsteg, D. High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months. Clin. Neurophysiol. 2009, 120, 1835–1840. [Google Scholar] [CrossRef]
- Tello, C.; De Moraes, C.G.V.; Prata, T.S.; Derr, P.; Patel, J.; Siegfried, J.; Liebmann, J.M.; Ritch, R. Repeatability of short-duration transient visual evoked potentials in normal subjects. Doc. Ophthalmol. 2010, 120, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Schatz, A.; Röck, T.; Naycheva, L.; Willmann, G.; Wilhelm, B.; Peters, T.; Bartz-Schmidt, K.U.; Zrenner, E.; Messias, A.; Gekeler, F. Transcorneal electrical stimulation for patients with retinitis pigmentosa: A prospective, randomized, sham-controlled exploratory study. Invest. Ophthalmol. Vis. Sci. 2011, 52, 4485–4496. [Google Scholar] [CrossRef]
- Dawson, W.W.; Trick, G.L.; Litzkow, C.A.; Trick, L.; Litzkow, C.A. Improved electrode for electroretinography. Investig. Ophthalmol. Vis. Sci. 1979, 18, 988–991. [Google Scholar]
Frequency Band | Pearson’s r | 95% CI | p-Value |
---|---|---|---|
Delta (1.5–3.5 Hz) | 0.84 | [0.51, 0.95] | 0.0007 *** |
Theta (4–7.5 Hz) | 0.85 | [0.54, 0.96] | 0.0004 *** |
Alpha (8–12 Hz) | 0.92 | [0.73, 0.98] | <0.0001 *** |
Beta 1 (13–16 Hz) | 0.75 | [0.31, 0.93] | 0.0048 ** |
Beta 2 (13–21 Hz) | 0.80 | [0.43, 0.94] | 0.0016 ** |
Beta 3 (21–32 Hz) | 0.71 | [0.23, 0.91] | 0.0094 ** |
Gamma (35–45 Hz) | 0.62 | [0.07, 0.88] | 0.0319 * |
Mains noise (50 Hz) | 0.63 | [0.09, 0.89] | 0.0269 * |
Frequency Band | LS Means Amplitude Ratio | dfnom | dfden | p-Value |
---|---|---|---|---|
Delta (1.5–3.5 Hz) | 0.67 | 1 | 143 | <0.0001 *** |
Theta (4–7.5 Hz) | 0.75 | 1 | 143 | 0.0002 *** |
Alpha (8–12 Hz) | 0.86 | 1 | 143 | 0.0347 ** |
Beta 1 (13–16 Hz) | 0.88 | 1 | 143 | 0.0929 ** |
Beta 2 (13–21 Hz) | 0.88 | 1 | 143 | 0.0878 ** |
Beta 3 (21–32 Hz) | 0.90 | 1 | 143 | 0.1471 * |
Gamma (35–45 Hz) | 0.82 | 1 | 143 | 0.0081 *** |
Check size | Cursor | Recording Duration (s) | Amplitude M ± SD (µV) | Peak Time M ± SD (ms) | ||
---|---|---|---|---|---|---|
Gold-Cup | Marble | Gold-Cup | Marble | |||
0.8° | N75 | 0 | −5.02 ± 3.27 | −4.78 ± 2.52 | 71.42 ± 4.74 | 72.75 ± 5.75 |
20.5 | −5.50 ± 3.07 | −4.08 ± 3.07 | 70.42 ± 4.08 | 72.42 ± 4.70 | ||
41.0 | −4.79 ± 3.07 | −3.94 ± 2.41 | 71.17 ± 4.76 | 72.42 ± 5.63 | ||
P100 | 0 | 15.37 ± 5.09 | 15.00 ± 5.83 | 97.83 ± 3.21 | 101.08 ± 4.23 | |
20.5 | 15.37 ± 5.48 | 14.99 ± 5.33 | 99.92 ± 2.31 | 100.75 ± 3.25 | ||
41.0 | 15.84 ± 4.88 | 15.00 ± 6.47 | 98.67 ± 3.14 | 98.83 ± 4.37 | ||
0.25° | N75 | 61.5 | −8.05 ± 3.94 | −7.65 ± 3.94 | 78.33 ± 4.12 | 78.58 ± 2.64 |
82.0 | −8.13 ± 3.97 | −8.45 ± 4.63 | 77.92 ± 3.85 | 78.50 ± 3.40 | ||
102.5 | −7.46 ± 3.36 | −7.29 ± 3.70 | 78.25 ± 5.40 | 78.25 ± 4.16 | ||
P100 | 61.5 | 17.21 ± 4.53 | 17.62 ± 6.29 | 103.75 ± 6.43 | 104.17 ± 3.88 | |
82.0 | 17.82 ± 4.77 | 17.98 ± 5.77 | 103.83 ± 5.10 | 105.50 ± 4.95 | ||
102.5 | 16.97 ± 5.23 | 17.09 ± 5.01 | 105.92 ± 5.68 | 105.92 ± 5.38 |
Model | R2adj | Effect | dfnom | dfden | F-Value | p-Value |
---|---|---|---|---|---|---|
N75 amplitude (n = 144) | 0.66 | Check size | 1 | 125 | 24.4845 | <0.0001 *** |
Electrode | 1 | 125 | 0.9693 | 0.3268 * | ||
Duration (check size) | 2 | 125 | 0.5974 | 0.5518 | ||
Electrode × check size | 1 | 125 | 0.4229 | 0.5167 | ||
Duration × electrode (check size) | 2 | 125 | 0.1254 | 0.8822 | ||
N75 peak time (n = 144) | 0.75 | Check size | 1 | 125 | 48.0600 | <0.0001 *** |
Electrode | 1 | 125 | 0.9360 | 0.3352 * | ||
Duration (check size) | 2 | 125 | 0.0941 | 0.9102 | ||
Electrode × check size | 1 | 125 | 0.2511 | 0.6171 | ||
Duration × electrode (check size) | 2 | 125 | 0.0127 | 0.9874 | ||
P100 amplitude (n = 144) | 0.75 | Check size | 1 | 125 | 5.5562 | 0.0200 ** |
Electrode | 1 | 125 | 0.0475 | 0.8278 | ||
Duration (check size) | 2 | 125 | 0.1557 | 0.8560 | ||
Electrode × check size | 1 | 125 | 0.4750 | 0.4920 * | ||
Duration × electrode (check size) | 2 | 125 | 0.0608 | 0.9410 | ||
P100 peak time (n = 144) | 0.58 | Check size | 1 | 125 | 13.1892 | 0.0004 *** |
Electrode | 1 | 125 | 0.0021 | 0.9635 | ||
Duration (check size) | 2 | 125 | 2.1584 | 0.1198 * | ||
Electrode × check size | 1 | 125 | 0.6178 | 0.4334 * | ||
Duration × electrode (check size) | 2 | 125 | 1.2045 | 0.3033 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straßer, T.; Kramer, S.; Kempf, M.; Peters, T.; Kurtenbach, A.; Zrenner, E. Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex. Sensors 2019, 19, 4890. https://doi.org/10.3390/s19224890
Straßer T, Kramer S, Kempf M, Peters T, Kurtenbach A, Zrenner E. Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex. Sensors. 2019; 19(22):4890. https://doi.org/10.3390/s19224890
Chicago/Turabian StyleStraßer, Torsten, Susanne Kramer, Melanie Kempf, Tobias Peters, Anne Kurtenbach, and Eberhart Zrenner. 2019. "Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex" Sensors 19, no. 22: 4890. https://doi.org/10.3390/s19224890
APA StyleStraßer, T., Kramer, S., Kempf, M., Peters, T., Kurtenbach, A., & Zrenner, E. (2019). Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex. Sensors, 19(22), 4890. https://doi.org/10.3390/s19224890